9 research outputs found

    BonA from Acinetobacter baumannii Forms a Divisome-Localized Decamer That Supports Outer Envelope Function

    Get PDF
    Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multidrug-resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates production of an outer membrane lipoprotein, which we designate BonA, in response to challenge with polymyxins. Here, we show that BonA has limited sequence similarity and distinct structural features compared to lipoproteins from other bacterial species. Analyses through X-ray crystallography, small-angle X-ray scattering, electron microscopy, and multiangle light scattering demonstrate that BonA has a dual BON (Bacterial OsmY and Nodulation) domain architecture and forms a decamer via an unusual oligomerization mechanism. This analysis also indicates this decamer is transient, suggesting dynamic oligomerization plays a role in BonA function. Antisera recognizing BonA shows it is an outer membrane protein localized to the divisome. Loss of BonA modulates the density of the outer membrane, consistent with a change in its structure or link to the peptidoglycan, and prevents motility in a clinical strain (ATCC 17978). Consistent with these findings, the dimensions of the BonA decamer are sufficient to permeate the peptidoglycan layer, with the potential to form a membrane-spanning complex during cell division. IMPORTANCE The pathogen Acinetobacter baumannii is considered an urgent threat to human health. A. baumannii is highly resistant to treatment with antibiotics, in part due to its protective cell envelope. This bacterium is only distantly related to other bacterial pathogens, so its cell envelope has distinct properties and contains components distinct from those of other bacteria that support its function. Here, we report the discovery of BonA, a protein that supports A. baumannii outer envelope function and is required for cell motility. We determine the atomic structure of BonA and show that it forms part of the cell division machinery and functions by forming a complex, features that mirror those of distantly related homologs from other bacteria. By improving our understanding of the A. baumannii cell envelope this work will assist in treating this pathogen

    Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils

    Get PDF
    Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.DATA AVAILABILTY: All amplicon sequencing data, raw metagenomes, metagenomic assemblies, and metagenome-assembled genomes were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive under the BioProject accession no. PRJNA630822. All other study data are included in the article and/or supporting information.An Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) Fellowship, an Australian Antarctic Division grant, a South African National Antarctic Program grant, a National Health & Medical Research Council Emerging Leadership 2 (NHMRC EL2) Fellowship, an Australian Government Research Training Stipend Scholarship, a Monash International Tuition Scholarship, a Monash Postgraduate Publications Award, a South African National Antarctic Programme (SANAP) postdoctoral grant.https://www.pnas.orghj2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Energetic basis of microbial growth and persistence in desert ecosystems

    No full text
    Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems. Accumulating evidence suggests that dormancy is a common strategy that facilitates microbial survival in response to water and carbon limitation. Whereas photoautotrophs are restricted to specific niches in extreme deserts, metabolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama Desert and Antarctica. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.An ARC DECRA fellowship (DE170100310; awarded to C.G.), a Swiss National Science Foundation Early Postdoc Mobility fellowship (P2EZP3_178421; awarded to E.C.), an Australian Government Research training stipend (awarded to P.M.L.), Monash University Ph.D. scholarships (awarded to P.M.L. and S.K.B.), and a European Research Council (ERC) starting grant funded by the ERC under the European Union’s Horizon 2020 research and innovation program (636928; awarded to D.W.).https://msystems.asm.orghj2020Genetic

    Energetic basis of microbial growth and persistence in desert ecosystems

    No full text
    Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems. Accumulating evidence suggests that dormancy is a common strategy that facilitates microbial survival in response to water and carbon limitation. Whereas photoautotrophs are restricted to specific niches in extreme deserts, metabolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama Desert and Antarctica. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.An ARC DECRA fellowship (DE170100310; awarded to C.G.), a Swiss National Science Foundation Early Postdoc Mobility fellowship (P2EZP3_178421; awarded to E.C.), an Australian Government Research training stipend (awarded to P.M.L.), Monash University Ph.D. scholarships (awarded to P.M.L. and S.K.B.), and a European Research Council (ERC) starting grant funded by the ERC under the European Union’s Horizon 2020 research and innovation program (636928; awarded to D.W.).https://msystems.asm.orghj2020Genetic

    Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival

    Get PDF
    © 2019, The Author(s). Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process remain incompletely resolved. In this work, we addressed these knowledge gaps through culture-based and culture-independent work. We confirmed through shotgun proteomic and transcriptional analysis that the genetically tractable aerobic soil actinobacterium Mycobacterium smegmatis upregulates expression of a form I molydenum–copper carbon monoxide dehydrogenase by 50-fold when exhausted for organic carbon substrates. Whole-cell biochemical assays in wild-type and mutant backgrounds confirmed that this organism aerobically respires CO, including at sub-atmospheric concentrations, using the enzyme. Contrary to current paradigms on CO oxidation, the enzyme did not support chemolithoautotrophic growth and was dispensable for CO detoxification. However, it significantly enhanced long-term survival, suggesting that atmospheric CO serves a supplemental energy source during organic carbon starvation. Phylogenetic analysis indicated that atmospheric CO oxidation is widespread and an ancestral trait of CO dehydrogenases. Homologous enzymes are encoded by 685 sequenced species of bacteria and archaea, including from seven dominant soil phyla, and we confirmed genes encoding this enzyme are abundant and expressed in terrestrial and marine environments. On this basis, we propose a new survival-centric model for the evolution of aerobic CO oxidation and conclude that, like atmospheric H2, atmospheric CO is a major energy source supporting persistence of aerobic heterotrophic bacteria in deprived or changeable environments

    Trace gas oxidizers are widespread and active members of soil microbial communities

    No full text
    International audienceSoil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world

    Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts

    No full text
    DATA AVAILABILITY : Next generation sequencing data that supports the findings of this study have been deposited in GenBank with the accession code PRJNA664610. All other data supporting the findings of this study are available in the article/Supplementary Information.Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.The Australian Government Research Training Program (RTP) Scholarship, the Australian Research Council Future Fellowship, the Australian Antarctic Program Project 5097, the Australian Antarctic Science project grant, an ARC DECRA Fellowship, and a NHMRC New Investigator Grant. Open Access funding enabled and organized by CAUL and its Member Institutions.www.nature.com/ismejam2023BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan
    corecore