1,670 research outputs found

    Deterministic Polynomial-Time Algorithms for Designing Short DNA Words

    Get PDF
    Designing short DNA words is a problem of constructing a set (i.e., code) of n DNA strings (i.e., words) with the minimum length such that the Hamming distance between each pair of words is at least k and the n words satisfy a set of additional constraints. This problem has applications in, e.g., DNA self-assembly and DNA arrays. Previous works include those that extended results from coding theory to obtain bounds on code and word sizes for biologically motivated constraints and those that applied heuristic local searches, genetic algorithms, and randomized algorithms. In particular, Kao, Sanghi, and Schweller (2009) developed polynomial-time randomized algorithms to construct n DNA words of length within a multiplicative constant of the smallest possible word length (e.g., 9 max{log n, k}) that satisfy various sets of constraints with high probability. In this paper, we give deterministic polynomial-time algorithms to construct DNA words based on derandomization techniques. Our algorithms can construct n DNA words of shorter length (e.g., 2.1 log n + 6.28 k) and satisfy the same sets of constraints as the words constructed by the algorithms of Kao et al. Furthermore, we extend these new algorithms to construct words that satisfy a larger set of constraints for which the algorithms of Kao et al. do not work.Comment: 27 page

    Towards an astronomical foundation model for stars with a Transformer-based model

    Full text link
    Rapid strides are currently being made in the field of artificial intelligence using Transformer-based models like Large Language Models (LLMs). The potential of these methods for creating a single, large, versatile model in astronomy has not yet been explored. In this work, we propose a framework for data-driven astronomy that uses the same core techniques and architecture as used by LLMs. Using a variety of observations and labels of stars as an example, we build a Transformer-based model and train it in a self-supervised manner with cross-survey data sets to perform a variety of inference tasks. In particular, we demonstrate that a single\textit{single} model can perform both discriminative and generative tasks even if the model was not trained or fine-tuned to do any specific task. For example, on the discriminative task of deriving stellar parameters from Gaia XP spectra, we achieve an accuracy of 47 K in TeffT_\mathrm{eff}, 0.11 dex in logg\log{g}, and 0.07 dex in [M/H][\mathrm{M/H}], outperforming an expert XGBoost\texttt{XGBoost} model in the same setting. But the same model can also generate XP spectra from stellar parameters, inpaint unobserved spectral regions, extract empirical stellar loci, and even determine the interstellar extinction curve. Our framework demonstrates that building and training a single\textit{single} foundation model without fine-tuning using data and parameters from multiple surveys to predict unmeasured observations and parameters is well within reach. Such "Large Astronomy Models" trained on large quantities of observational data will play a large role in the analysis of current and future large surveys

    Staging of Prostate Cancer Using Automatic Feature Selection, Sampling and Dempster-Shafer Fusion

    Get PDF
    A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is also addressed here. Three feature subsets obtained by the use of principal components analysis (PCA), genetic algorithm (GA) and rough sets (RS) based approaches were also used in the study. The performance of under-sampling, synthetic minority over-sampling technique (SMOTE) and a combination of the two were also investigated and the performance of the obtained models was compared. To combine the classifier outputs, we used the Dempster-Shafer (DS) theory, whereas the actual choice of combined models was made using a GA. We found that the best performance for the overall system resulted from the use of under sampled data combined with rough sets based features modeled as a support vector machine (SVM)

    Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers

    Full text link
    Recent developments in engineering and algorithms have made real-world applications in quantum computing possible in the near future. Existing quantum programming languages and compilers use a quantum assembly language composed of 1- and 2-qubit (quantum bit) gates. Quantum compiler frameworks translate this quantum assembly to electric signals (called control pulses) that implement the specified computation on specific physical devices. However, there is a mismatch between the operations defined by the 1- and 2-qubit logical ISA and their underlying physical implementation, so the current practice of directly translating logical instructions into control pulses results in inefficient, high-latency programs. To address this inefficiency, we propose a universal quantum compilation methodology that aggregates multiple logical operations into larger units that manipulate up to 10 qubits at a time. Our methodology then optimizes these aggregates by (1) finding commutative intermediate operations that result in more efficient schedules and (2) creating custom control pulses optimized for the aggregate (instead of individual 1- and 2-qubit operations). Compared to the standard gate-based compilation, the proposed approach realizes a deeper vertical integration of high-level quantum software and low-level, physical quantum hardware. We evaluate our approach on important near-term quantum applications on simulations of superconducting quantum architectures. Our proposed approach provides a mean speedup of 5×5\times, with a maximum of 10×10\times. Because latency directly affects the feasibility of quantum computation, our results not only improve performance but also have the potential to enable quantum computation sooner than otherwise possible.Comment: 13 pages, to apper in ASPLO

    A Hybrid Labeled Multi-Bernoulli Filter With Amplitude For Tracking Fluctuating Targets

    Full text link
    The amplitude information of target returns has been incorporated into many tracking algorithms for performance improvements. One of the limitations of employing amplitude feature is that the signal-to-noise ratio (SNR) of the target, i.e., the parameter of amplitude likelihood, is usually assumed to be known and constant. In practice, the target SNR is always unknown, and is dependent on aspect angle hence it will fluctuate. In this paper we propose a hybrid labeled multi-Bernoulli (LMB) filter that introduces the signal amplitude into the LMB filter for tracking targets with unknown and fluctuating SNR. The fluctuation of target SNR is modeled by an autoregressive gamma process and amplitude likelihoods for Swerling 1 and 3 targets are considered. Under Rao-Blackwell decomposition, an approximate Gamma estimator based on Laplace transform and Markov Chain Monte Carlo method is proposed to estimate the target SNR, and the kinematic state is estimated by a Gaussian mixture filter conditioned on the target SNR. The performance of the proposed hybrid filter is analyzed via a tracking scenario including three crossing targets. Simulation results verify the efficacy of the proposed SNR estimator and quantify the benefits of incorporating amplitude information for multi-target tracking
    corecore