6 research outputs found

    Esa Caves: training astronauts for space exploration

    Get PDF
    The first spaceflight was several decades ago, and yet extraterrestrial exploration is only at the beginning and has mainly been carried out by robotic probes and rovers sent to extraterrestrial planets and deep space. In the future human extraterrestrial exploration will take place and to get ready for long periods of permanence in space, astronauts are trained during long duration missions on the International Space Station (ISS). To prepare for such endeavours, team training activities are performed in extreme environments on Earth, as isolated deserts, base camps on Antarctica, or stations built on the bottom of the sea, trying to simulate the conditions and operations of space. Space agencies are also particularly interested in the search of signs of life forms in past or present extreme natural environments, such as salt lakes in remote deserts, very deep ocean habitats, submarine volcanic areas, sulphuric acid caves, and lava tubes. One natural environment that very realistically mimics an extraterrestrial exploration habitat is the cave. Caves are dark, remote places, with constant temperature, many logistic problems and stressors (isolation, communication and supply difficulties, physical barriers), and their exploration requires discipline, teamwork, technical skills and a great deal of behavioural adaptation. For this reason, since 2008 the European Space Agency has carried out training activities in the subterranean environment and the CAVES project is one of those training courses, probably the most realistic one. CAVES stands for Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills, and is meant as a multidisciplinary multicultural team exploration mission in a cave. It has been developed by ESA in the past few years (2008-2011) and is open for training of astronauts of the ISS Partner Space Agencies (USA, Russia, Japan, Canada, and Europe). Astronauts are first trained for 5 days to explore, document and survey a karst system, then take on a cave exploration mission for 6 days underground. A team of expert cave instructors, a Human Behaviour and Performance facilitator, scientists and video reporters, ensure that all tasks are performed in complete safety and guides all these astronauts\u27 activities. During the underground mission the astronauts\u27 technical competences are challenged (exploring, surveying, taking pictures), their human behaviour and decision-making skills are debriefed, and they are required to carry out an operational programme which entails performing scientific tasks and testing equipment, similarly to what they are required to do on the ISS. The science program includes environmental and air circulation monitoring, mineralogy, microbiology, chemical composition of waters, and search for life forms adapted to the cavern environment. The CAVES 2012 Course will be explained and the first interesting scientific results will be presented

    Enabling deep-space experimentations on cyanobacteria by monitoring cell division resumption in dried Chroococcidiopsis sp. 029 with accumulated DNA damage

    Get PDF
    Cyanobacteria are gaining considerable interest as a method of supporting the long-term presence of humans on the Moon and settlements on Mars due to their ability to produce oxygen and their potential as bio-factories for space biotechnology/synthetic biology and other applications. Since many unknowns remain in our knowledge to bridge the gap and move cyanobacterial bioprocesses from Earth to space, we investigated cell division resumption on the rehydration of dried Chroococcidiopsis sp. CCMEE 029 accumulated DNA damage while exposed to space vacuum, Mars-like conditions, and Fe-ion radiation. Upon rehydration, the monitoring of the ftsZ gene showed that cell division was arrested until DNA damage was repaired, which took 48 h under laboratory conditions. During the recovery, a progressive DNA repair lasting 48 h of rehydration was revealed by PCR-stop assay. This was followed by overexpression of the ftsZ gene, ranging from 7.5- to 9-fold compared to the non-hydrated samples. Knowing the time required for DNA repair and cell division resumption is mandatory for deep-space experiments that are designed to unravel the effects of reduced/microgravity on this process. It is also necessary to meet mission requirements for dried-sample implementation and real-time monitoring upon recovery. Future experiments as part of the lunar exploration mission Artemis and the lunar gateway station will undoubtedly help to move cyanobacterial bioprocesses beyond low Earth orbit. From an astrobiological perspective, these experiments will further our understanding of microbial responses to deep-space conditions

    ESA CAVES: TRAINING ASTRONAUTS FOR SPACE EXPLORATION

    No full text
    The first spaceflight was several decades ago, and yet extraterrestrial exploration is only at the beginning and has mainly been carried out by robotic probes and rovers sent to extraterrestrial planets and deep space. In the future human extraterrestrial exploration will take place and to get ready for long periods of permanence in space, astronauts are trained during long duration missions on the International Space Station (ISS). To prepare for such endeavours, team training activities are performed in extreme environments on Earth, as isolated deserts, base camps on Antarctica, or stations built on the bottom of the sea, trying to simulate the conditions and operations of space. Space agencies are also particularly interested in the search of signs of life forms in past or present extreme natural environments, such as salt lakes in remote deserts, very deep ocean habitats, submarine volcanic areas, sulphuric acid caves, and lava tubes. One natural environment that very realistically mimics an extraterrestrial exploration habitat is the cave. Caves are dark, remote places, with constant temperature, many logistic problems and stressors (isolation, communication and supply difficulties, physical barriers), and their exploration requires discipline, teamwork, technical skills and a great deal of behavioural adaptation. For this reason, since 2008 the European Space Agency has carried out training activities in the subterranean environment and the CAVES project is one of those training courses, probably the most realistic one. CAVES stands for Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills, and is meant as a multidisciplinary multicultural team exploration mission in a cave. It has been developed by ESA in the past few years (2008–2011) and is open for training of astronauts of the ISS Partner Space Agencies (USA, Russia, Japan, Canada, and Europe). Astronauts are first trained for 5 days to explore, document and survey a karst system, then take on a cave exploration mission for 6 days underground. A team of expert cave instructors, a Human Behaviour and Performance facilitator, scientists and video reporters, ensure that all tasks are performed in complete safety and guides all these astronauts’ activities. During the underground mission the astronauts’ technical competences are challenged (exploring, surveying, taking pictures), their human behaviour and decision-making skills are debriefed, and they are required to carry out an operational programme which entails performing scientific tasks and testing equipment, similarly to what they are required to do on the ISS. The science program includes environmental and air circulation monitoring, mineralogy, microbiology, chemical composition of waters, and search for life forms adapted to the cavern environment. The CAVES 2012 Course will be explained and the first interesting scientific results will be presented

    Esa Caves: training astronauts for SPACE exploration

    No full text
    The first spaceflight was several decades ago, and yet extraterrestrial exploration is only at the beginning and has mainly been carried out by robotic probes and rovers sent to extraterrestrial planets and deep space. In the future human extraterrestrial exploration will take place and to get ready for long periods of permanence in space, astronauts are trained during long duration missions on the International Space Station (ISS). To prepare for such endeavours, team training activities are performed in extreme environments on Earth, as isolated deserts, base camps on Antarctica, or stations built on the bottom of the sea, trying to simulate the conditions and operations of space. Space agencies are also particularly interested in the search of signs of life forms in past or present extreme natural environments, such as salt lakes in remote deserts, very deep ocean habitats, submarine volcanic areas, sulphuric acid caves, and lava tubes. One natural environment that very realistically mimics an extraterrestrial exploration habitat is the cave. Caves are dark, remote places, with constant temperature, many logistic problems and stressors (isolation, communication and supply difficulties, physical barriers), and their exploration requires discipline, teamwork, technical skills and a great deal of behavioural adaptation. For this reason, since 2008 the European Space Agency has carried out training activities in the subterranean environment and the CAVES project is one of those training courses, probably the most realistic one. CAVES stands for Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills, and is meant as a multidisciplinary multicultural team exploration mission in a cave. It has been developed by ESA in the past few years (2008–2011) and is open for training of astronauts of the ISS Partner Space Agencies (USA, Russia, Japan, Canada, and Europe). Astronauts are first trained for 5 days to explore, document and survey a karst system, then take on a cave exploration mission for 6 days underground. A team of expert cave instructors, a Human Behaviour and Performance facilitator, scientists and video reporters, ensure that all tasks are performed in complete safety and guides all these astronauts’ activities. During the underground mission the astronauts’ technical competences are challenged (exploring, surveying, taking pictures), their human behaviour and decision-making skills are debriefed, and they are required to carry out an operational programme which entails performing scientific tasks and testing equipment, similarly to what they are required to do on the ISS. The science program includes environmental and air circulation monitoring, mineralogy, microbiology, chemical composition of waters, and search for life forms adapted to the cavern environment. The CAVES 2012 Course will be explained and the first interesting scientific results will be presented

    A roadmap for a European extraterrestrial sample curation facility - the EURO CARES project

    No full text
    Sample return missions are among the most exciting space missions, providing both scientifically unique information and an unparalleled mechanism for the inspiring the public. Returned samples allow us to make critical ground truth measurements that can calibrate remote sensing measurements from spacecraft. Some scientific studies can only be done in laboratories rather than remotely or with landed spacecraft. Currently Europe does not have a facility suitable for the curation of returned extra-terrestrial samples. This not only hinders European Space Agency (ESA) missions, but also renders European institutions and Principal Investigators unable to fully participate as equal participants in missions implemented by other countries. The EURO CARES project was the first European attempt to review and evaluate the current state-of-the-art in curatorial practice for sample return missions, and determine the different and necessary steps in order to create a fully functional European Extra-terrestrial Sample Curation Facility to match the ESA requirements.SCOPUS: ch.binfo:eu-repo/semantics/publishe

    A roadmap for a European extraterrestrial sample curation facility – the EURO CARES project

    No full text
    Sample return missions are among the most exciting space missions, providing both scientifically unique information and an unparalleled mechanism for the inspiring the public. Returned samples allow us to make critical ground truth measurements that can calibrate remote sensing measurements from spacecraft. Some scientific studies can only be done in laboratories rather than remotely or with landed spacecraft. Currently Europe does not have a facility suitable for the curation of returned extra-terrestrial samples. This not only hinders European Space Agency (ESA) missions, but also renders European institutions and Principal Investigators unable to fully participate as equal participants in missions implemented by other countries. The EUROsingle bondCARES project was the first European attempt to review and evaluate the current state-of-the-art in curatorial practice for sample return missions, and determine the different and necessary steps in order to create a fully functional European Extra-terrestrial Sample Curation Facility to match the ESA requirements
    corecore