318 research outputs found

    Phonon Bottleneck Effect Leads to Observation of Quantum Tunneling of the Magnetization and Butterfly Hysteresis Loops in (Et4N)3Fe2F9

    Full text link
    A detailed investigation of the unusual dynamics of the magnetization of (Et4N)3Fe2F9 (Fe2), containing isolated [Fe2F9]3- dimers, is presented and discussed. Fe2 possesses an S=5 ground state with an energy barrier of 2.40 K due to an axial anisotropy. Poor thermal contact between sample and bath leads to a phonon bottleneck situation, giving rise to butterfly-shaped hysteresis loops below 5 K concomitant with slow decay of the magnetization for magnetic fields Hz applied along the Fe--Fe axis. The butterfly curves are reproduced using a microscopic model based on the interaction of the spins with resonant phonons. The phonon bottleneck allows for the observation of resonant quantum tunneling of the magnetization at 1.8 K, far above the blocking temperature for spin-phonon relaxation. The latter relaxation is probed by AC magnetic susceptibility experiments at various temperatures and bias fields. At H=0, no out-of-phase signal is detected, indicating that at T smaller than 1.8 K Fe2 does not behave as a single-molecule magnet. At 1 kG, relaxation is observed, occurring over the barrier of the thermally accessible S=4 first excited state that forms a combined system with the S=5 state.Comment: 10 pages, 10 figure

    Endurance Training Attenuates Chemoreflex Sensitivity to Intermittent Hypoxia

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Butterfly Hysteresis and Slow Relaxation of the Magnetization in (Et4N)3Fe2F9: Manifestations of a Single-Molecule Magnet

    Full text link
    (Et4N)3Fe2F9 exhibits a butterfly--shaped hysteresis below 5 K when the magnetic field is parallel to the threefold axis, in accordance with a very slow magnetization relaxation in the timescale of minutes. This is attributed to an energy barrier Delta=2.40 K resulting from the S=5 dimer ground state of [Fe2F9]^{3-} and a negative axial anisotropy. The relaxation partly occurs via thermally assisted quantum tunneling. These features of a single-molecule magnet are observable at temperatures comparable to the barrier height, due to an extremely inefficient energy exchange between the spin system and the phonons. The butterfly shape of the hysteresis arises from a phonon avalanche effect.Comment: 18 pages, 5 eps figures, latex (elsart

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm

    Longitudinal validity of spirometers--a challenge in longitudinal studies.

    Get PDF
    Pulmonary function testing (PFT) in longitudinal studies involves the repeated use of spirometers over long time periods. We assess the comparability of PFT results taken under biologic field conditions using thirteen certified devices of various technology and age. Comparability of measurements across devices and over time is relevant both in clinical and epidemiological research. Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1) and Forced Expiratory Flow 50% (FEF50) were compared before and after the data collection of the Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) and the European Community Respiratory Health Survey (ECRHS) cohort studies. Three test series were conducted with 46, 50 and 56 volunteers using various combinations of spirometers to compare the eight flow-sensing spirometers (Sensormedics 2200) used in the SAPALDIA cross-sectional and follow-up, two new flow-sensing instruments (Sensormedics Vmax) and three volume displacement spirometers (two Biomedin/Baires and one Sensormedics 2400). The initial comparison (1999/2000) of eight Sensormedics 2200 and the follow-up comparison (2003) of the same devices revealed a maximal variation of up to 2.6% for FVC, 2.4% for FEV1 and 2.8% for FEF50 across devices with no indication of systematic differences between spirometers. Results were also reproducible between Biomedin, Sensormedics 2200 and 2400. The new generation of Sensormedics (Vmax) gave systematically lower results. The study demonstrates the need to conduct spirometer comparison tests with humans. For follow-up studies we strongly recommend the use of the same spirometers

    Effect of Beta-Adrenergic Blockade on Coronary Blood Flow during Isometric Exercise in Older Adults

    Get PDF
    Ross A., Gao Z., Heffernan M., Leuenberger U., Sinoway L., Muller M. Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA The rise in heart rate (HR) and cardiac contractility during exercise is due to activation of myocardial b-adrenergic receptors. b-receptors are also located on coronary blood vessels and are thought to participate in exercise hyperemia, thereby helping to preserve the balance between myocardial oxygen supply and demand. However, experimental data in human subjects are lacking. Purpose: We hypothesized that intravenous b-adrenergic blockade would attenuate the reflex tachycardia and coronary hyperemia in response to isometric handgrip (i.e., a stimulus known to increase both cardiac metabolism and coronary blood flow). Methods: Six men (66 ± 2 yrs) performed isometric handgrip exercise at 40% of maximal voluntary contraction for 2 minutes after receiving intravenous propranolol; control trials occurred on separate days. HR and blood pressure were monitored continuously and rate-pressure product (RPP) was calculated as an index of myocardial oxygen demand. Coronary blood flow velocity (CBFV) was measured by transthoracic Doppler echocardiography (left anterior descending coronary artery) and coronary vascular resistance (CVR) was calculated. The ratio of RPP/CVR was used as an index of myocardial oxygen supply. Physiological parameters were statistically compared at baseline and in response to exercise between conditions. Results: Refer to Table. Conclusion: The novel finding of this study is that under resting conditions propranolol raises coronary resistance (impaired oxygen supply) despite also lowering cardiac metabolism (reduced oxygen demand). These data support the concept that coronary b-adrenergic receptors contribute to myocardial blood flow regulation both at rest and during exercise in humans. Supported by NIH P01 HL096570 and UL1 TR00012

    In vivo imaging of lymphocytes in the CNS reveals different behaviour of naïve T cells in health and autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-photon laser scanning microscopy (TPLSM) has become a powerful tool in the visualization of immune cell dynamics and cellular communication within the complex biological networks of the inflamed central nervous system (CNS). Whereas many previous studies mainly focused on the role of effector or effector memory T cells, the role of naïve T cells as possible key players in immune regulation directly in the CNS is still highly debated.</p> <p>Methods</p> <p>We applied <it>ex vivo </it>and intravital TPLSM to investigate migratory pathways of naïve T cells in the inflamed and non-inflamed CNS. MACS-sorted naïve CD4+ T cells were either applied on healthy CNS slices or intravenously injected into RAG1 -/- mice, which were affected by experimental autoimmune encephalomyelitis (EAE). We further checked for the generation of second harmonic generation (SHG) signals produced by extracellular matrix (ECM) structures.</p> <p>Results</p> <p>By applying TPLSM on living brain slices we could show that the migratory capacity of activated CD4+ T cells is not strongly influenced by antigen specificity and is independent of regulatory or effector T cell phenotype. Naïve T cells, however, cannot find sufficient migratory signals in healthy, non-inflamed CNS parenchyma since they only showed stationary behaviour in this context. This is in contrast to the high motility of naïve CD4+ T cells in lymphoid organs. We observed a highly motile migration pattern for naïve T cells as compared to effector CD4+ T cells in inflamed brain tissue of living EAE-affected mice. Interestingly, in the inflamed CNS we could detect reticular structures by their SHG signal which partially co-localises with naïve CD4+ T cell tracks.</p> <p>Conclusions</p> <p>The activation status rather than antigen specificity or regulatory phenotype is the central requirement for CD4+ T cell migration within healthy CNS tissue. However, under inflammatory conditions naïve CD4+ T cells can get access to CNS parenchyma and partially migrate along inflammation-induced extracellular SHG structures, which are similar to those seen in lymphoid organs. These SHG structures apparently provide essential migratory signals for naïve CD4+ T cells within the diseased CNS.</p

    Validity of annoyance scores for estimation of long term air pollution exposure in epidemiologic studies: the Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA)

    Get PDF
    In air pollution epidemiology, estimates of long term exposure are often based on measurements made at one fixed site monitor per area. This may lead to exposure misclassification. The present paper validates a questionnaire-based indicator of ambient air pollution levels and its applicability to assess their within-area variability. Within the framework of the SAPALDIA (Swiss Study on Air Pollution and Lung Diseases in Adults) cross-sectional study (1991), 9,651 participants reported their level of annoyance caused by air pollution on an 11-point scale. This subjective measure was compared with annual mean concentrations of particulate matter less than 10 microm in diameter (PM10) and nitrogen dioxide. The impact of individual factors on reported scores was evaluated. Nitrogen dioxide concentrations at home outdoors (measured in 1993), smoking, workplace dust exposure, and respiratory symptoms were found to be predictors of individual annoyance scores. Regression of population mean annoyance scores against annual mean PM10 and nitrogen dioxide concentrations (measured in 1993 and 1991, respectively) across areas showed a linear relation and strong correlations (r&gt;0.85). Analysis within areas yielded consistent results. The observed associations between subjective and objective air pollution exposure estimates suggest that population mean scores, but not individual scores, may serve as a simple tool for grading air quality within areas. Reported annoyance due to air pollution should be considered an indicator for a complex environmental condition and thus might be used for evaluating the implementation of environmental policies
    corecore