243 research outputs found
Investigating Atomic Details of the CaF(111) Surface with a qPlus Sensor
The (111) surface of CaF has been intensively studied with
large-amplitude frequency-modulation atomic force microscopy and atomic
contrast formation is now well understood. It has been shown that the apparent
contrast patterns obtained with a polar tip strongly depend on the tip
terminating ion and three sub-lattices of anions and cations can be imaged.
Here, we study the details of atomic contrast formation on CaF(111) with
small-amplitude force microscopy utilizing the qPlus sensor that has been shown
to provide utmost resolution at high scanning stability. Step edges resulting
from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp
structures and on flat terraces, the atomic corrugation is seen in high clarity
even for large area scans. The atomic structure is also not lost when scanning
across triple layer step edges. High resolution scans of small surface areas
yield contrast features of anion- and cation sub-lattices with unprecedented
resolution. These contrast patterns are related to previously reported
theoretical results.Comment: 18 pages, 9 Figures, presented at 7th Int Conf Noncontact AFM
Seattle, USA Sep 12-15 2004, accepted for publication in Nanotechnology,
http://www.iop.or
Pseudogap and photoemission spectra in the attractive Hubbard model
Angle-resolved photoemission spectra are calculated microscopically for the
two-dimensional attractive Hubbard model. A system of self-consistent T-matrix
equations are solved numerically in the real-time domain. The single-particle
spectral function has a two-peak structure resulting from the presense of bound
states. The spectral function is suppressed at the chemical potential, leading
to a pseudogap-like behavior. At high temperatures and densities the pseudogap
diminishes and finally disappears; these findings are similar to experimental
observations for the cuprates.Comment: 5 pages, 4 figures, published versio
Four electrons in a two-leg Hubbard ladder: exact ground states
In the case of a two-leg Hubbard ladder we present a procedure which allows
the exact deduction of the ground state for the four particle problem in
arbitrary large lattice system, in a tractable manner, which involves only a
reduced Hilbert space region containing the ground state. In the presented
case, the method leads to nine analytic, linear, and coupled equations
providing the ground state. The procedure which is applicable to few particle
problems and other systems as well is based on an r-space representation of the
wave functions and construction of symmetry adapted orthogonal basis wave
vectors describing the Hilbert space region containing the ground state. Once
the ground state is deduced, a complete quantum mechanical characterization of
the studied state can be given. Since the analytic structure of the ground
state becomes visible during the use of the method, its importance is not
reduced only to the understanding of theoretical aspects connected to exact
descriptions or potential numerical approximation scheme developments, but is
relevant as well for a large number of potential technological application
possibilities placed between nano-devices and quantum calculations, where the
few particle behavior and deep understanding are important key aspects to know.Comment: 19 pages, 5 figure
Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API
We consider the incremental computation of minimal unsatisfiable cores (MUCs)
of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a
novel API to allow for incremental solving based on clause groups. A clause
group is a set of clauses which is incrementally added to or removed from a
previously solved QBF. Our implementation of the novel API is related to
incremental SAT solving based on selector variables and assumptions. However,
the API entirely hides selector variables and assumptions from the user, which
facilitates the integration of DepQBF in other tools. We present implementation
details and, for the first time, report on experiments related to the
computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in
proceedings of SAT 2015, LNCS, Springe
Non-linear feedback effects in coupled Boson-Fermion systems
We address ourselves to a class of systems composed of two coupled subsystems
without any intra-subsystem interaction: itinerant Fermions and localized
Bosons on a lattice. Switching on an interaction between the two subsystems
leads to feedback effects which result in a rich dynamical structure in both of
them. Such feedback features are studied on the basis of the flow equation
technique - an infinite series of infinitesimal unitary transformations - which
leads to a gradual elimination of the inter-subsystem interaction. As a result
the two subsystems get decoupled but their renormalized kinetic energies become
mutually dependent on each other. Choosing for the inter - subsystem
interaction a charge exchange term (the Boson-Fermion model) the initially
localized Bosons acquire itinerancy through their dependence on the
renormalized Fermion dispersion. This latter evolves from a free particle
dispersion into one showing a pseudogap structure near the chemical potential.
Upon lowering the temperature both subsystems simultaneously enter a
macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a
soundwave like dispersion while the Fermions develop a true gap in their
dispersion. The essential physical features described by this technique are
already contained in the renormalization of the kinetic terms in the respective
Hamiltonians of the two subsystems. The extra interaction terms resulting in
the process of iteration only strengthen this physics. We compare the results
with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.
Pairing fluctuations and pseudogaps in the attractive Hubbard model
The two-dimensional attractive Hubbard model is studied in the weak to
intermediate coupling regime by employing a non-perturbative approach. It is
first shown that this approach is in quantitative agreement with Monte Carlo
calculations for both single-particle and two-particle quantities. Both the
density of states and the single-particle spectral weight show a pseudogap at
the Fermi energy below some characteristic temperature T*, also in good
agreement with quantum Monte Carlo calculations. The pseudogap is caused by
critical pairing fluctuations in the low-temperature renormalized classical
regime of the two-dimensional system. With increasing temperature
the spectral weight fills in the pseudogap instead of closing it and the
pseudogap appears earlier in the density of states than in the spectral
function. Small temperature changes around T* can modify the spectral weight
over frequency scales much larger than temperature. Several qualitative results
for the s-wave case should remain true for d-wave superconductors.Comment: 20 pages, 12 figure
Phase Fluctuations and Single Fermion Spectral Density in 2D Systems with Attraction
The effect of static fluctuations in the phase of the order parameter on the
normal and superconducting properties of a 2D system with attractive
four-fermion interaction is studied. Analytic expressions for the fermion
Green's function, its spectral density, and the density of states are derived
in the approximation where the coupling between the spin and charge degrees of
freedom is neglected. The resulting single-particle Green's function clearly
demonstrates a non-Fermi liquid behavior. The results show that as the
temperature increases through the 2D critical temperature, the width of the
quasiparticle peaks broadens significantly.Comment: 29 pages, ReVTeX, 12 EPS figures; references added, typos corrected,
new comments adde
- …