69 research outputs found

    Competition between shear banding and wall slip in wormlike micelles

    Get PDF
    The interplay between shear band (SB) formation and boundary conditions (BC) is investigated in wormlike micellar systems (CPyCl--NaSal) using ultrasonic velocimetry coupled to standard rheology in Couette geometry. Time-resolved velocity profiles are recorded during transient strain-controlled experiments in smooth and sand-blasted geometries. For stick BC standard SB is observed, although depending on the degree of micellar entanglement temporal fluctuations are reported in the highly sheared band. For slip BC wall slip occurs only for shear rates larger than the start of the stress plateau. At low entanglement, SB formation is shifted by a constant Δγ˙\Delta\dot{\gamma}, while for more entangled systems SB constantly "nucleate and melt." Micellar orientation gradients at the walls may account for these original features.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Self-diffusion of rod-like viruses in the nematic phase

    Get PDF
    We measure the self-diffusion of colloidal rod-like virus {\it fd} in an isotropic and nematic phase. A low volume fraction of viruses are labelled with a fluorescent dye and dissolved in a background of unlabelled rods. The trajectories of individual rods are visualized using fluorescence microscopy from which the diffusion constant is extracted. The diffusion parallel (D∥D_{\parallel}) and perpendicular (D⊥D_{\perp}) to the nematic director is measured. The ratio (D∥/D⊥D_{\parallel}/D_{\perp}) increases monotonically with increasing virus concentration. Crossing the isotropic-nematic phase boundary results in increase of D∥D_{\parallel} and decrease of D⊥D_{\perp} when compared to the diffusion in the isotropic phase (DisoD_{iso}).Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    Interplay between a hydrodynamic instability and a phase transition: the Faraday instability in dispersions of rodlike colloids

    Get PDF
    Strong effects of the Faraday instability on suspensions of rodlike colloidal particles are reported through measurements of the critical acceleration and of the surface wave amplitude. We show that the transition to parametrically excited surface waves displays discontinuous and hysteretic features. This subcritical behaviour is attributed to the shear-thinning properties of our colloidal suspensions thanks to a phenomenological model based on rheological data under large amplitude oscillatory shear. Birefringence measurements provide direct evidence that Faraday waves induce local nematic ordering of the rodlike colloids. While local alignment simply follows the surface oscillations for dilute, isotropic suspensions, permanent nematic patches are generated by surface waves in samples close to the isotropic-to-nematic transition and above the transition large domains align in the flow direction. This strong coupling between the fluid microstructure and a hydrodynamic instability is confirmed by numerical computations based on the microstructural response of rodlike viruses in shear flow.Comment: 8 pages, 6 figure

    Fast Diffusion of Long Guest Rods in a Lamellar Phase of Short Host Particles

    Full text link
    We investigate the dynamic behavior of long guest rod-like particles immersed in liquid crystalline phases formed by shorter host rods, tracking both guest and host particles by fluorescence microscopy. Counter-intuitively, we evidence that long rods diffuse faster than short rods forming the one-dimensional ordered smectic-A phase. This results from the larger and non-commensurate size of the guest particles as compared to the wavelength of the energy landscape set by the lamellar stack of liquid slabs. The long guest particles are also shown to be still mobile in the crystalline smectic-B phase, as they generate their own voids in the adjacent layers.Comment: 5 pages, 4 figures, Accepted in Phys. Rev. Let

    Glasses of dynamically asymmetric binary colloidal mixtures: Quiescent properties and dynamics under shear

    Get PDF
    We investigate mixing effects on the glass state of binary colloidal hard-sphere-like mixtures with large size asymmetry, at a constant volume fraction phi = 0.61. The structure, dynamics and viscoelastic response as a function of mixing ratio reflect a transition between caging by one or the other component. The strongest effect of mixing is observed in systems dominated by caging of the large component. The possibility to pack a large number of small spheres in the free volume left by the large ones induces a pronounced deformation of the cage of the large spheres, which become increasingly delocalised. This results in faster dynamics and a strong reduction of the elastic modulus. When the relative volume fraction of small spheres exceeds that of large spheres, the small particles start to form their own cages, slowing down the dynamics and increasing the elastic modulus of the system. The large spheres become the minority and act as an impurity in the ordering beyond the first neighbour shell, i.e. the cage, and do not directly affect the particle organisation on the cage level. In such a system, when shear at constant rate is applied, melting of the glass is observed due to facilitated out-of-cage diffusion which is associated with structural anisotropy induced by shear.Comment: 8 pages, 7 figures, Proceedings of the 4th International Symposium on Slow Dynamics in Complex Systems, Sendai, 2-7 December 201

    Self-diffusion of Rod-like Viruses Through Smectic Layer

    Get PDF
    We report the direct visualization at the scale of single particles of mass transport between smectic layers, also called permeation, in a suspension of rod-like viruses. Self-diffusion takes place preferentially in the direction normal to the smectic layers, and occurs by quasi-quantized steps of one rod length. The diffusion rate corresponds with the rate calculated from the diffusion in the nematic state with a lamellar periodic ordering potential that is obtained experimentally.Comment: latex, 4 pages, 4 figures, accepted in Phys. Rev. Let

    When bigger is faster: a self-van Hove analysis of the enhanced self-diffusion of non-commensurate guest particles in smectics

    Full text link
    We investigate the anomalous dynamics in smectic phases of short host rods where, counter-intuitively, long guest rod-shaped particles diffusive faster than the short host ones, due to their precise size mismatch. In addition to the previously reported mean-square displacement, we analyze the time evolution of the Self-van Hove functions G(r,t), as this probability density function uncovers intrinsic heterogeneous dynamics. Through this analysis, we show that the dynamics of the host particles parallel to the director becomes non-gaussian and therefore heterogeneous after the nematic-to-smectic-A phase transition, even though it exhibits a nearly diffusive behavior according to its mean-square displacement. In contrast, the non-commensurate guest particles display Gaussian dynamics of the parallel motion, up to the transition to the smectic-B phase. Thus, we show that the Self-van Hove function is a very sensitive probe to account for the instantaneous and heterogeneous dynamics of our system, and should be more widely considered as a quantitative and complementary approach of the classical mean-square displacement characterization in diffusion processes.Comment: 10 pages, 9 figures, the article has been accepted by the Journal of Chemical Physic

    Nematic-Isotropic Spinodal Decomposition Kinetics of Rod-like Viruses

    Get PDF
    We investigate spinodal decomposition kinetics of an initially nematic dispersion of rod-like viruses (fd virus). Quench experiments are performed from a flow-stabilized homogeneous nematic state at high shear rate into the two-phase isotropic-nematic coexistence region at zero shear rate. We present experimental evidence that spinodal decomposition is driven by orientational diffusion, in accordance with a very recent theory.Comment: 17 pages, 6 figures, accepted in Phys. Rev.

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech
    • …
    corecore