3,377 research outputs found
Supervised Blockmodelling
Collective classification models attempt to improve classification
performance by taking into account the class labels of related instances.
However, they tend not to learn patterns of interactions between classes and/or
make the assumption that instances of the same class link to each other
(assortativity assumption). Blockmodels provide a solution to these issues,
being capable of modelling assortative and disassortative interactions, and
learning the pattern of interactions in the form of a summary network. The
Supervised Blockmodel provides good classification performance using link
structure alone, whilst simultaneously providing an interpretable summary of
network interactions to allow a better understanding of the data. This work
explores three variants of supervised blockmodels of varying complexity and
tests them on four structurally different real world networks.Comment: Workshop on Collective Learning and Inference on Structured Data 201
Topological Feature Based Classification
There has been a lot of interest in developing algorithms to extract clusters
or communities from networks. This work proposes a method, based on
blockmodelling, for leveraging communities and other topological features for
use in a predictive classification task. Motivated by the issues faced by the
field of community detection and inspired by recent advances in Bayesian topic
modelling, the presented model automatically discovers topological features
relevant to a given classification task. In this way, rather than attempting to
identify some universal best set of clusters for an undefined goal, the aim is
to find the best set of clusters for a particular purpose.
Using this method, topological features can be validated and assessed within
a given context by their predictive performance.
The proposed model differs from other relational and semi-supervised learning
models as it identifies topological features to explain the classification
decision. In a demonstration on a number of real networks the predictive
capability of the topological features are shown to rival the performance of
content based relational learners. Additionally, the model is shown to
outperform graph-based semi-supervised methods on directed and approximately
bipartite networks.Comment: Awarded 3rd Best Student Paper at 14th International Conference on
Information Fusion 201
Active Discovery of Network Roles for Predicting the Classes of Network Nodes
Nodes in real world networks often have class labels, or underlying
attributes, that are related to the way in which they connect to other nodes.
Sometimes this relationship is simple, for instance nodes of the same class are
may be more likely to be connected. In other cases, however, this is not true,
and the way that nodes link in a network exhibits a different, more complex
relationship to their attributes. Here, we consider networks in which we know
how the nodes are connected, but we do not know the class labels of the nodes
or how class labels relate to the network links. We wish to identify the best
subset of nodes to label in order to learn this relationship between node
attributes and network links. We can then use this discovered relationship to
accurately predict the class labels of the rest of the network nodes.
We present a model that identifies groups of nodes with similar link
patterns, which we call network roles, using a generative blockmodel. The model
then predicts labels by learning the mapping from network roles to class labels
using a maximum margin classifier. We choose a subset of nodes to label
according to an iterative margin-based active learning strategy. By integrating
the discovery of network roles with the classifier optimisation, the active
learning process can adapt the network roles to better represent the network
for node classification. We demonstrate the model by exploring a selection of
real world networks, including a marine food web and a network of English
words. We show that, in contrast to other network classifiers, this model
achieves good classification accuracy for a range of networks with different
relationships between class labels and network links
Detecting change points in the large-scale structure of evolving networks
Interactions among people or objects are often dynamic in nature and can be
represented as a sequence of networks, each providing a snapshot of the
interactions over a brief period of time. An important task in analyzing such
evolving networks is change-point detection, in which we both identify the
times at which the large-scale pattern of interactions changes fundamentally
and quantify how large and what kind of change occurred. Here, we formalize for
the first time the network change-point detection problem within an online
probabilistic learning framework and introduce a method that can reliably solve
it. This method combines a generalized hierarchical random graph model with a
Bayesian hypothesis test to quantitatively determine if, when, and precisely
how a change point has occurred. We analyze the detectability of our method
using synthetic data with known change points of different types and
magnitudes, and show that this method is more accurate than several previously
used alternatives. Applied to two high-resolution evolving social networks,
this method identifies a sequence of change points that align with known
external "shocks" to these networks
Multiscale mixing patterns in networks
Assortative mixing in networks is the tendency for nodes with the same
attributes, or metadata, to link to each other. It is a property often found in
social networks manifesting as a higher tendency of links occurring between
people with the same age, race, or political belief. Quantifying the level of
assortativity or disassortativity (the preference of linking to nodes with
different attributes) can shed light on the factors involved in the formation
of links and contagion processes in complex networks. It is common practice to
measure the level of assortativity according to the assortativity coefficient,
or modularity in the case of discrete-valued metadata. This global value is the
average level of assortativity across the network and may not be a
representative statistic when mixing patterns are heterogeneous. For example, a
social network spanning the globe may exhibit local differences in mixing
patterns as a consequence of differences in cultural norms. Here, we introduce
an approach to localise this global measure so that we can describe the
assortativity, across multiple scales, at the node level. Consequently we are
able to capture and qualitatively evaluate the distribution of mixing patterns
in the network. We find that for many real-world networks the distribution of
assortativity is skewed, overdispersed and multimodal. Our method provides a
clearer lens through which we can more closely examine mixing patterns in
networks.Comment: 11 pages, 7 figure
Integral lift engine preliminary design
A preliminary mechanical design of a complete lift fan engine system is reported. A description of the lift fan engine, layout drawings of the components and complete engine, and a discussion of the design analyses and results are presented. The design features and areas of analysis include fan and compressor rotor blades of composite construction, a combustor folded over the compressor, relatively high-temperature blades in the high-pressure turbine, the first stage of the low-pressure turbine used for bearing support and ducting of lubricant to the bearings, a complete lubrication system, critical speeds of the shafting, and vibration and flutter of the blading
- …