13 research outputs found

    Національна доповідь про стан і перспективи розвитку освіти в Україні: монографія (До 30-річчя незалежності України)

    Get PDF
    The publication provides a comprehensive analysis of the state and development of national education over the 30 years of Ukraine’s independence, identifies current problems in education, ascertains the causes of their emergence, offers scientifically reasoned ways to modernise domestic education in the context of globalisation, European integration, innovative development, and national self-identification. Designed for legislators, state officials, education institutions leaders, teaching and academic staff, the general public, all those who seek to increase the competitiveness of Ukrainian education in the context of civilisation changes.У виданні здійснено всебічний аналіз стану і розвитку національної освіти за 30-річний період незалежності України, визначено актуальні проблеми освітньої сфери, виявлено причини їх виникнення, запропоновано науково обґрунтовані шляхи модернізації вітчизняної освіти в умовах глобалізації, європейської інтеграції, інноваційного розвитку та національної самоідентифікації. Розраховано на законодавців, державних управлінців, керівників закладів освіти, педагогічних і науково-педагогічних працівників, широку громадськість, усіх, хто прагне підвищення конкурентоспроможності української освіти в контексті цивілізаційних змін

    Fall Detection Using Multiple Bioradars and Convolutional Neural Networks

    No full text
    A lack of effective non-contact methods for automatic fall detection, which may result in the development of health and life-threatening conditions, is a great problem of modern medicine, and in particular, geriatrics. The purpose of the present work was to investigate the advantages of utilizing a multi-bioradar system in the accuracy of remote fall detection. The proposed concept combined usage of wavelet transform and deep learning to detect fall episodes. The continuous wavelet transform was used to get a time-frequency representation of the bio-radar signal and use it as input data for a pre-trained convolutional neural network AlexNet adapted to solve the problem of detecting falls. Processing of the experimental results showed that the designed multi-bioradar system can be used as a simple and view-independent approach implementing a non-contact fall detection method with an accuracy and F1-score of 99%

    Challenges and Potential Solutions of Psychophysiological State Monitoring with Bioradar Technology

    No full text
    Psychophysiological state monitoring provides a promising way to detect stress and accurately assess wellbeing. The purpose of the present work was to investigate the advantages of utilizing a new unobtrusive multi-transceiver system on the accuracy of remote psychophysiological state monitoring by means of a bioradar technique. The technique was tested in laboratory conditions with the participation of 35 practically healthy volunteers, who were asked to perform arithmetic and physical workload tests imitating different types of stressors. Information about any variation in vital signs, registered by a bioradar with two transceivers, was used to detect mental or physical stress. Processing of the experimental results showed that the designed two-channel bioradar can be used as a simple and relatively easy approach to implement a non-contact method for stress monitoring. However, individual specificity of physiological responses to mental and physical workloads makes the creation of a universal stress-detector classifier that is suitable for people with different levels of stress tolerance a challenging task. For non-athletes, the proposed method allows classification of calm state/mental workload and calm state/physical workload with an accuracy of 89% and 83% , respectively, without the usage of any additional a priori information on the subject

    Challenges and Potential Solutions of Psychophysiological State Monitoring with Bioradar Technology

    No full text
    Psychophysiological state monitoring provides a promising way to detect stress and accurately assess wellbeing. The purpose of the present work was to investigate the advantages of utilizing a new unobtrusive multi-transceiver system on the accuracy of remote psychophysiological state monitoring by means of a bioradar technique. The technique was tested in laboratory conditions with the participation of 35 practically healthy volunteers, who were asked to perform arithmetic and physical workload tests imitating different types of stressors. Information about any variation in vital signs, registered by a bioradar with two transceivers, was used to detect mental or physical stress. Processing of the experimental results showed that the designed two-channel bioradar can be used as a simple and relatively easy approach to implement a non-contact method for stress monitoring. However, individual specificity of physiological responses to mental and physical workloads makes the creation of a universal stress-detector classifier that is suitable for people with different levels of stress tolerance a challenging task. For non-athletes, the proposed method allows classification of calm state/mental workload and calm state/physical workload with an accuracy of 89% and 83% , respectively, without the usage of any additional a priori information on the subject

    Contactless Fall Detection by Means of Multiple Bioradars and Transfer Learning

    No full text
    Fall detection in humans is critical in the prevention of life-threatening conditions. This is especially important for elderly people who are living alone. Therefore, automatic fall detection is one of the most relevant problems in geriatrics. Bioradiolocation-based methods have already shown their efficiency in contactless fall detection. However, there is still a wide range of areas to improve the precision of fall recognition based on view-independent concepts. In particular, in this paper, we propose an approach based on a more complex multi-channel system (three or four bioradars) in combination with the wavelet transform and transfer learning. In the experiments, we have used several radar configurations for recording different movement types. Then, for the binary classification task, a pre-trained convolutional neural network AlexNet has been fine-tuned using scalograms. The proposed systems have shown a noticeable improvement in the fall recognition performance in comparison with the previously used two-bioradar system. The accuracy and Cohen’s kappa of the two-bioradar system are 0.92 and 0.86 respectively, whereas the accuracy and Cohen’s kappa of the four-bioradar system are 0.99 and 0.99 respectively. The three-bioradar system’s performance turned out to be in between two of the aforementioned systems and its calculated accuracy and Cohen’s kappa are 0.98 and 0.97 respectively. These results may be potentially used in the design of a contactless multi-bioradar fall detection system

    Comparison of Bioradiolocation and Respiratory Plethysmography Signals in Time and Frequency Domains on the Base of Cross-Correlation and Spectral Analysis

    No full text
    Comparison of bioradiolocation and standard respiratory plethysmography signals during simultaneous registration of different types of the human breathing movements is performed in both time and frequency domains. For all couples of synchronized signals corresponding to bioradiolocation and respiratory plethysmography methods, the cross-correlation and spectral functions are calculated, and estimates of their generalized characteristics are defined. The obtained results consider bioradiolocation to be a reliable remote sensing technique for noncontact monitoring of breathing pattern in medical applications

    A Feasibility Study for Life Signs Monitoring via a Continuous-Wave Radar

    Get PDF
    We present a feasibility study for life signs detection using a continuous-wave radar working in the band around 4 GHz. The data-processing is carried out by using two different data processing approaches, which are compared about the possibility to characterize the frequency behaviour of the breathing and heartbeat activity. The two approaches are used with the main aim to show the possibility of monitoring the vital signs activity in an accurate and reliable way

    A Novel Method for Recognition of Bioradiolocation Signal Breathing Patterns for Noncontact Screening of Sleep Apnea Syndrome

    Get PDF
    A novel method for recognition of breathing patterns of bioradiolocation signals breathing patterns (BSBP) in the task of noncontact screening of sleep apnea syndrome (SAS) is proposed and implemented on the base of wavelet transform (WT) and neural network (NNW) applications. Selection of the optimal parameters of WT includes determination of the proper level of wavelet decomposition and the best basis for feature extraction using modified entropy criterion. Selection of the optimal properties of NNW includes defining the best number of hidden neurons and learning algorithm for the chosen NNW topology. The effectiveness of the proposed approach is tested on clinically verified database of BRL signals corresponding to the three classes of breathing patterns: obstructive sleep apnea (OSA); central sleep apnea (CSA); normal calm sleeping (NCS) without sleep-disordered breathing (SDB) episodes
    corecore