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Anovelmethod for recognition of breathing patterns of bioradiolocation signals breathing patterns (BSBP) in the task of noncontact
screening of sleep apnea syndrome (SAS) is proposed and implemented on the base of wavelet transform (WT) and neural
network (NNW) applications. Selection of the optimal parameters of WT includes determination of the proper level of wavelet
decomposition and the best basis for feature extraction using modified entropy criterion. Selection of the optimal properties of
NNWincludes defining the best number of hidden neurons and learning algorithm for the chosenNNWtopology.The effectiveness
of the proposed approach is tested on clinically verified database of BRL signals corresponding to the three classes of breathing
patterns: obstructive sleep apnea (OSA); central sleep apnea (CSA); normal calm sleeping (NCS)without sleep-disordered breathing
(SDB) episodes.

1. Introduction

One of the critical areas of sleep medicine is implementation
of novel technical approaches for remote vital signs monitor-
ing [1], particularly in screening of sleep disordered breathing
(SDB), which is character for sleep apnea syndrome (SAS) [2].
Early detection and proper classification of SDB episodes are
an important aspect of SAS treatment strategy planning and
taking of opportune preventive measures in clinical practice
[3].

Bioradiolocation (BRL) [4] is a modern remote sens-
ing technique allowing to perform noncontact vital signs
monitoring of living objects [5] on the base of analysis
of specific biometric modulation in reflected radiolocation
signal. During tidal breathing process the modulation is
mostly determined by reciprocating displacements of skin
surface in abdominal and thoracic areas of chest wall due

to periodic contractions of respiratory muscles [6]. The
reliability and effectiveness of BRL technology application in
noncontact respiratory monitoring [7] and remote screening
of SAS [8] on the base of breathing pattern analysis were
convincingly demonstrated.

Synthesis of intellectual radar data processing systems
for target tracking, localization, and recognition is an up to
date task of modern cybernetics. Methods and algorithms
for automated recognition of patterns in nonstationary BRL
signals are in demand in complex ergatic and biomedical
systems [9].

Practically, improvement of performance of pattern
recognition can be achieved by applying one of the following
approaches or their combinations: firstly, by optimizing
decision rules; secondly, by applying more efficient feature
extraction methods [10]. Decision rules implemented on the
base of neural networks (NNW) technology are considered to
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Figure 1: Scheme of the proposed method for recognition of BPBS on the base of WT and NNW.

be promising in practical applications of pattern recognition
tasks [11]. In turn, wavelet transform (WT) is a perspective
mathematical apparatus, which is especially demanded in
forming of attribute space of nonstationary multicomponent
signals with noise, for which high-frequency components of
short duration and extended low-frequency components are
typical [12].

The aim of this study is development of a novel method
for recognition of breathing patterns of bioradiolocation
signals (BPBS) in the task of noncontact screening of SAS
with automated selection of optimal parameters of WT
and NNW. The proposed approach is tested in recognition
of clinically verified BPBS corresponding to the following
classes: obstructive sleep apnea (OSA); central sleep apnea
(CSA); normal calm sleeping (NCS) without SDB.

2. Structure of the Proposed Pattern
Recognition Method

The proposed method for recognition of BPBS in noncontact
screening of SAS includes the followingmain steps (Figure 1):

(i) data preprocessing procedure (including high-pass
and low-pass Butterworth filtering, resampling,
smoothing with five-point moving average filter, and
Z-normalization);

(ii) feature extraction (forming of BPBS attribute vectors
consisting of mean-squared values of WT detailed
coefficients of each BRL signal quadrature);

(iii) classification of patterns (applying the fixed number
of resulting components of BPBS attribute vectors to
the inputs of NNW classifier—Rumelhart multilayer
perceptron (MLP) [13]—as an output comes the value
corresponding to one of the target classes: OSA, CSA,
and NCS).

For feature extraction an attribute space of absolute values
of WT detailed coefficients for both BRL signal quadratures
was constructed. Thereby each component of BPBS attribute
vector on the chosen wavelet decomposition level can be
calculated as follows:

𝑉𝑗 =
√(𝑑
𝑄
𝑗 )
2
+ (𝑑
𝐼
𝑗)
2
, (1)
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Figure 2: Scheme of the algorithm for automated selection of the optimal parameters of WT for improvement of BPBS feature extraction.

where𝑉𝑗 is a resulting component of BPBS attribute vector; 𝑗
is current number of a resulting component of BPBS attribute
vector; 𝑑𝑄𝑗 is the detailed wavelet coefficient for𝑄-quadrature
of BRL signal; 𝑑𝐼𝑗 is the detailed wavelet coefficient for 𝐼-
quadrature of BRL signal.

For improvement of the performance of the proposed
BSBP recognition method (Figure 1), procedures for both

automated selection of the optimalWTparameters (Figure 2)
and NNW properties (Figure 3) were developed.

3. Optimization Criterions

3.1. Criterion of the Optimal Level of Wavelet Decomposition.
The estimate 𝑓𝑚 of the upper frequency limit for the range in
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which most of quasi-stationary signal energy is concentrated
(the upper limit of normal breathing frequency range) is
considered to be known for BRL signals [4]. The maximum
possible frequency value for the registered signal is calculated
in accordance withNyquist theorem (is half the sampling rate
𝑓𝑠). Then the optimal decomposition level (ODL) of WT for
an analyzed BRL signal can be calculated from the relation
[14]:

𝐿𝑜 = [log2 (
𝑓𝑠

2𝑓𝑚

)] + 1 = − [log2 (2𝑓𝑚Δ𝑡)] + 1, (2)

where 𝑓𝑚 is the upper limit of frequency band in which the
most of signal energy is concentrated; 𝑓𝑠 is sampling rate; Δ𝑡
is sampling period.

Thus, further decomposition of analyzed BRL signals to
the levels exceeding the threshold of ODL is not effective as
calculated detailed coefficients ofWTwill not be informative
in the aspect of effective feature extraction for BPBS attribute
space constructing.

3.2. Criterion of the Optimal Basis of Wavelet Transform. For
selection of the optimal basis ofWT from the class of orthog-
onal wavelets with compact support, a modified entropy
based criterion (MEC) is proposed which is calculated on the
base of logarithm energy entropy estimation in the task of
classification of BPBS:

𝐸𝑜 = −
√
1

𝐶𝑁
(

𝐶

∑

𝑘=1

(

𝑁

∑

𝑖=1

(

𝐾

∑

𝑗=1

ln(√(𝑑𝑄𝑗 )
2
+ (𝑑
𝐼
𝑗)
2
))))

→ min,
(3)

where 𝐸𝑜 is estimate of MEC; 𝐶 is number of classes of
patterns;𝑁 is number of patterns in each class;𝐾 is number of
resulting components in attribute vectors; ln(𝑑2𝑗) is logarithm
energy entropy estimate; 𝑑𝑄𝑗 is the detailed wavelet coefficient
for 𝑄-quadrature of BRL signal; 𝑑𝐼𝑗 is the detailed wavelet
coefficient for 𝐼-quadrature of BRL signal.

Selection of the optimal basis of WT for effective BPBS
attribute space forming should be performed using mean
squared values of detailed wavelet coefficients of each BRL
signal quadrature for MEC calculations.

3.3. Criterion of the Optimal Number of Hidden Neurons. For
selection of the optimal number of hidden neurons of MLP
for BPBS, recognition the mean recognition accuracy (MRA)
criterion is proposed. Varying in each NNW operation test
the number of hidden neurons, an estimate of MRA is
calculated as follows:

𝐴𝑜 =
1

𝑀𝐵
(

𝑀

∑

𝑚=1

(

𝐵

∑

𝑏=1

𝐶𝑏)) → max, (4)

where 𝐴𝑜 is estimate of MRA; 𝑀 is number of operation
tests; 𝐵 is number of analyzed wavelet basis;𝐶𝑏 is recognition
accuracy for analyzed wavelet basis.

Selection of the optimal number of hidden neurons of
MLPwith application ofMRA criterion should be performed
using wavelet bases with such ordinal indexes for which the
minimal values of MEC are achieved on training data set.

4. Optimization Algorithm

4.1. Structure of the Optimization Algorithm. The proposed
algorithm for automated selection of optimal parameters of
WT and NNW for improving the performance of BPBS
recognition consists of the two main steps. In the first step,
for informative feature extraction applying WT, initially a
general class of wavelets is defined, then a set of wavelet bases
with ordinal indexes for wavelet families from the general
class is formed, the optimal level of wavelet decomposition is
determined, and finally the optimal wavelet basis is selected
on the base of MEC. In the second step, for improving
NNW operation performance, after preliminary estimation
of number of hidden neurons such their optimal amount is
found for which the best MRA value is achieved on training
data set, and then the best NNW learning algorithm is
selected.

4.2. Procedure for Selection of the Optimal Parameters of
Wavelet Transform. The proposed procedure for selection of
the optimal parameters of WT includes the following main
steps (Figure 2):

(i) setting initial parameters characterized by the ana-
lyzed BRL signal properties (the maximum possible
frequency of signal; sampling rate; and others);

(ii) defining general class of wavelets based on desir-
able properties for BRL signal processing (orthog-
onal wavelets with compact support—proper time-
frequency localization and available fast algorithms
for implementing WT);

(iii) forming a set of bases with ordinal indexes from wa-
velet families (Dobeshi, Coiflet, and Symlet families—
the properties of orthogonality, regularity, symme-
try, and approximating power of scaling functions
depend on the ordinal index of the wavelet basis);

(iv) calculating the optimal level of wavelet decomposi-
tion (estimation of ODL threshold on the base of the
maximum possible frequency of the analyzed BRL
signal and sampling rate values);

(v) selecting the optimal wavelet basis (estimation of
MEC on the base of log energy entropy value for the
task of BPBS classification).

4.3. Procedure for Selection of the Optimal Parameters of Neu-
ralNetwork. Theproposed procedure for selection of optimal
parameters of NNW classifier on the base of MLP with
nonlinear activation function includes the following main
steps (Figure 3):

(i) setting initial parameters characterized by the condi-
tions of the classification task (dimensions of input
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and output vectors, recognition accuracy, error val-
ues, and others);

(ii) setting the number of hidden layers (one layer—the
minimal complexity, availability of wide range of opti-
mization, and learning algorithms);

(iii) estimating the upper boundary limit of hidden
neurons number (in accordance with Kolmogorov-
Hecht-Nielsen theorem [15] for MLP);

(iv) choosing structural optimization method (simple
iterative algorithm of adding extra neurons);

(v) defining the optimal number of hidden neurons
(calculation of MRA during several operation tests of
NNW on a training data set);

(vi) selecting the best NNW learning algorithm (on the
base of such performance indicators as recognition
accuracy, time needed, computational complexity,
and others).

5. Experimental Study

For the test and optimization of the proposed methods
and algorithms for automated recognition of BPBS, the
clinically verified database of BRL signals for subjects with
SAS collected during simultaneous registration of full-night
polysomnography (PSG) acquired in the Sleep Laboratory
of Almazov Federal Heart, Blood and Endocrinology Centre
(Figure 4) was used [8]. The sample included 7 subjects
(4 males and 3 females, aged 43–62 years, with body mass
index of 21.6–57.7), depending on severity of SAS: 4 severe;
1 moderate; 1 mild; 1 normal. The full-night PSG records
were collected with Embla N7000 system. Simultaneously
BioRascan multifrequency BRL system with a continuous-
wave signal and step frequency modulation (developed at
Remote Sensing Laboratory of Bauman Moscow State Tech-
nical University) was used applying the operating frequency
range 3.6–4.0GHz. The internal clock of BRL and PSG
systems were synchronized for further verification [8].

For forming BPBS attribute vectors, both BRL signal
quadratures were used according to (1) with the same length
of 128 counts corresponding to 12.8 seconds satisfying the rec-
ommendations for screening of SAS [2]. In correspondence
with (2) for BRL signals at sampling rate of 𝑓𝑠 = 10.0Hz with
maximum breathing frequency [16] not exceeding the value
of 𝑓𝑚 = 1.0Hz, the OLD value cames to 𝐿𝑜 = 3 providing 16
components in the structure of BPBS attribute vectors.

The experimental data set included three classes of BPBS
(Figure 5): obstructive sleep apnea (OSA); central sleep apnea
(CSA); normal calm sleeping without SDB (NCS).

The experimental data set included 240 realizations of
BPBS related to the three classes (OSA, CSA, and NCS) in
the following proportion:

(i) 90 patterns (30 in each class)—training set;

(ii) 30 patterns (10 in each class)—validation set;

(iii) 120 patterns (40 in each class)—test set.

Figure 4: Scheme of the experiment on simultaneous registration
of BRL and PSG data during sleep.

Table 1: Selection of the optimal wavelet basis for BPBS feature
extraction.

Wavelet basis Entropy estimates
𝐸1 𝐸2 𝐸3 𝐸𝑜

DBSH13 −31,840 −70,530 −35,636 −49,188
SMLT13 −32,790 −80,104 −44,964 −56,313
CFLT5 −39,672 −71,158 −33,537 −50,866
Where 𝐸1, 𝐸2, and 𝐸3 are averaged entropy estimates for the three classes of
BPBS; 𝐸𝑜 is MEC estimates.

6. Results and Discussion

6.1. Selection of the Optimal Wavelet Basis. The optimal wa-
velet basis for constructing BPBS attribute space was selected
from orthogonal wavelets with compact support, including
the following ones available in MATLAB [12]:

(i) Dobeshi—16 bases (ordinal indexes from 1 to 16);

(ii) Symlet—14 bases (ordinal indexes from 4 to 17);

(iii) Coiflet—5 bases (ordinal indexes from 1 to 5).

For eachwavelet basis, BPBS attribute vectorswere formed on
the base of mean-squared values of WT detailed coefficients
of each BRL signal quadrature according to (1). The results
of the calculations of MEC estimates for the best bases from
each family are given in Table 1.

Thus wavelet basis Symlet 13 should be considered the
best according to MEC, but for the analysis of effectiveness
and consistency of the proposed entropy criterion itself the
best bases for Dobeshi and Coiflet wavelet families were also
subsequently considered.

6.2. Selection of the Optimal Number of Hidden Neurons.
After forming of attribute vectors of BPBS applying selected
wavelet bases (Dobeshi 13, Symlet 13, and Coiflet 5), the train-
ing of NNW classifier was 10 times independently performed
for each case varying the number of hidden neurons from 1 to
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Figure 5: Typical BRL signals for the three classes of analyzed patterns (OSA, CSA, and NCS).

Table 2: Selection of the optimal number of hidden neurons for
NNW.

Number of neurons Recognition accuracy values
𝐴DBSH13 𝐴SMLT13 𝐴CFLT5 𝐴Max 𝐴𝑜

1 0,360 0,455 0,479 0,479 0,431
2 0,561 0,620 0,562 0,620 0,581
3 0,732 0,675 0,746 0,746 0,718
4 0,730 0,793 0,734 0,793 0,752
5 0,789 0,823 0,756 0,823 0,789
6 0,768 0,818 0,808 0,818 0,798
7 0,799 0,842 0,814 0,842 0,818
8 0,821 0,825 0,815 0,825 0,820
9 0,836 0,850 0,836 0,850 0,841
10 0,813 0,848 0,833 0,848 0,831
11 0,820 0,839 0,812 0,839 0,824
12 0,821 0,831 0,825 0,831 0,826
13 0,836 0,823 0,827 0,836 0,829
14 0,788 0,820 0,818 0,820 0,809
15 0,824 0,782 0,794 0,824 0,800
Where𝐴DBSH13,𝐴SMLT13, and𝐴CFLT5 are mean BPBS recognition accuracy
values for corresponding wavelet bases (Dobeshi 13, Symlet 13, and Coiflet 5)
at the set number of hidden neurons of NNW; 𝐴Max is the maximum BPBS
recognition accuracy value; 𝐴𝑜 is MRA estimate.

15. MRA values for the three wavelet bases at varied number
of hidden neurons are given in Table 2.

Thus according to MRA criterion, the optimal number
of hidden neurons of NNW should be considered equal to
9 which also corresponds to the upper boundary limit esti-
mated from Kolmogorov-Hecht-Nielsen theorem for MLP
[15]. Herewith the best absolute value of recognition accuracy
was also achieved for wavelet basis Symlet 13.The estimate (2)
of MEC should also be considered effective and consistent as
varying the number of hidden neurons from 1 to 15 at mean
recognition accuracy not less than 75% for each analyzed
wavelet, the basis ofWTwith the optimalMEC value allowed
to achieve absolutely the best value of recognition accuracy
value.

6.3. Selection of the Best Learning Algorithm. Previously for
defining the optimal number of hidden neurons scaled con-
jugate gradient algorithm was used for training as it is con-
sidered to be the most multipurpose for feed forward NNW
topologies [13]. Subsequently to select the best learning algo-
rithm, the following gradient based variants implemented in
MATLAB were considered [11]:

(i) first-order gradient (FOG) algorithms—resilient
backpropagation (RPA);

(ii) conjugate gradient (CG) algorithms—Fletcher-
Reeves (FRA); Polak-Ribiére (PRA); Beale-Powell
(BPA); Moller (MA);

(iii) quasi-Newton (QN) algorithms—Levenberg-Mar-
quardt (LMA) Broyden-Fletcher-Goldfarb-Shanno
(BFGSA); Battiti (BA).

Selection of the best learning algorithm was performed for
MLP with one hidden layer with 9 hidden neurons with
application of wavelet basis Symlet 13 on the 3rd level of
wavelet decomposition in forming of BPBS attribute vectors.

Each time after 10 independent NNW operation tests
on the test data set the following averaged performance
indicators for learning algorithms were calculated: mean
recognition accuracy, number of epochs needed for training,
and time spent. Cross-validation criterion [11] was used to
determine the moment to stop training. The results in order
of priority of the algorithms are given in Table 3.

Thus LMA learning algorithm should be considered the
best in training of NNW for BPBS recognition in the task of
noncontact SAS screening, providing the mean accuracy not
less than 84% with type II error not exceeding 8% for SDB
episodes. The best absolute recognition accuracy of 86.7%
was also achieved for NNW realization with LMA learning
algorithm (Table 4).

7. Conclusion

A novel method for of BPBS recognition in the task of
noncontact SAS screening with automated selection of opti-
mal parameters of WT and NNW was developed. The BPBS
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Table 3: Selection of the best NNW learning algorithm.

Algorithm Performance indicators
Rank Title Accuracy Epochs Time (ms)
I LMA 0,842 12 493
II MA 0,826 41 801
III BA 0,811 39 936
IV RP 0,802 29 592
V BPA 0,798 25 757
VI BFGSA 0,794 23 811
VII PRA 0,793 21 683
VIII FRA 0,754 26 648

Table 4: Efficiency of BPBS recognition.

True OSA CSA NCS 𝛽err

OSA 36 0 3 6,9%
CSA 1 35 2 7,2%
NCS 6 4 33 20,8%
𝛼err 15,2% 9,5% 10,4% 86,7%

attribute space was formed on the base of mean-squared
values of wavelet detailed coefficients of each BRL signal
quadrature. MLP with one hidden layer and nonlinear
activation function was used as a classifier. The proposed
method was tested on clinically verified database of BRL
signals related to the three classes of BPBS: OSA; CSA; NCS.

In accordance with proposed MEC and ODL criterions,
basis Symlet 13 from the general class of wavelets with
compact support on the 3rd level of wavelet decomposition
was considered to be the best one for feature extraction.
The estimate of MEC itself should be considered effective
and consistent. Calculation of MRA criterion revealed that
the optimal number of NNW hidden neurons is equal to
9 which also corresponded to the upper boundary limit
estimated from Kolmogorov-Hecht-Nielsen theorem. LMA
should be considered the best training algorithm for the
proposed classifier providing the mean recognition accuracy
not less than 84% with type II error not exceeding 8%.
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