283 research outputs found

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure

    Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. Weakness of the extra-ocular, limb girdle and laryngeal muscles are established clinical features. Respiratory muscle involvement however has never been studied systematically, even though respiratory complications are one of the main causes of death. We therefore determined the prevalence and nature of respiratory muscle involvement in 23 patients with genetically confirmed CPEO. The main finding was decreased respiratory muscle strength, both expiratory (76.8% of predicted, p = 0.002) and inspiratory (79.5% of predicted, p = 0.004). Although the inspiratory vital capacity (92.5% of predicted, p = 0.021) and the forced expiratory volume in 1 s (89.3% of predicted, p = 0.002) were below predicted values, both were still within the normal range in the majority of patients. Expiratory weakness was associated with a decreased vital capacity (ρ = 0.502, p = 0.015) and decreased peak expiratory flow (ρ = 0.422, p = 0.045). Moreover, expiratory muscle strength was lower in patients with limb girdle weakness (62.6 ± 26.1% of predicted vs. 98.9 ± 22.5% in patients with normal limb girdle strength, p = 0.003), but was not associated with other clinical features, subjective respiratory complaints, disease severity or disease duration. Since respiratory involvement in CPEO is associated with severe morbidity and mortality, the present data justify periodic assessment of respiratory functions in all CPEO patients

    Illusionary Self-Motion Perception in Zebrafish

    Get PDF
    Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor instabilities that have been related to achiasmatic bel mutants, reversed optokinetic response (OKR) and congenital nystagmus (CN, involuntary conjugate oscillations of both eyes), looping opens a door to study the influence of visual input and eye movements on postural balance. Our result shows that looping correlates perfectly with reversed OKR and CN and is vision-dependent and contrast sensitive. CN precedes looping and the direction of the CN slow phase is predictive of the looping direction, but is absent during looping. Therefore, looping may be triggered by CN in bel. Moreover, looping in wild-type fish can also be evoked by whole-field motion, suggesting that looping in a bel mutant larvae is a result of self-motion perception. In contrary to previous hypotheses, our findings indicate that postural control in vertebrates relies on both direct visual input (afference signal) and eye-movement-related signals (efference copy or reafference signal)

    Hypereosinophilic syndromes

    Get PDF
    Hypereosinophilic syndromes (HES) constitute a rare and heterogeneous group of disorders, defined as persistent and marked blood eosinophilia (> 1.5 × 109/L for more than six consecutive months) associated with evidence of eosinophil-induced organ damage, where other causes of hypereosinophilia such as allergic, parasitic, and malignant disorders have been excluded. Prevalence is unknown. HES occur most frequently in young to middle-aged patients, but may concern any age group. Male predominance (4–9:1 ratio) has been reported in historic series but this is likely to reflect the quasi-exclusive male distribution of a sporadic hematopoietic stem cell mutation found in a recently characterized disease variant. Target-organ damage mediated by eosinophils is highly variable among patients, with involvement of skin, heart, lungs, and central and peripheral nervous systems in more than 50% of cases. Other frequently observed complications include hepato- and/or splenomegaly, eosinophilic gastroenteritis, and coagulation disorders. Recent advances in underlying pathogenesis have established that hypereosinophilia may be due either to primitive involvement of myeloid cells, essentially due to occurrence of an interstitial chromosomal deletion on 4q12 leading to creation of the FIP1L1-PDGFRA fusion gene (F/P+ variant), or to increased interleukin (IL)-5 production by a clonally expanded T cell population (lymphocytic variant), most frequently characterized by a CD3-CD4+ phenotype. Diagnosis of HES relies on observation of persistent and marked hypereosinophilia responsible for target-organ damage, and exclusion of underlying causes of hypereosinophilia, including allergic and parasitic disorders, solid and hematological malignancies, Churg-Strauss disease, and HTLV infection. Once these criteria are fulfilled, further testing for eventual pathogenic classification is warranted using appropriate cytogenetic and functional approaches. Therapeutic management should be adjusted to disease severity and eventual detection of pathogenic variants. For F/P+ patients, imatinib has undisputedly become first line therapy. For others, corticosteroids are generally administered initially, followed by agents such as hydroxycarbamide, interferon-alpha, and imatinib, for corticosteroid-resistant cases, as well as for corticosteroid-sparing purposes. Recent data suggest that mepolizumab, an anti-IL-5 antibody, is an effective corticosteroid-sparing agent for F/P-negative patients. Prognosis has improved significantly since definition of HES, and currently depends on development of irreversible heart failure, as well as eventual malignant transformation of myeloid or lymphoid cells

    The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers

    Get PDF
    Recent years showed significant progress in the molecular characterization of the chronic myeloproliferative disorders (CMPD) which are classified according to the WHO classification of 2001 as polycythemia vera (PV), chronic idiopathic myelofibrosis (CIMF), essential thrombocythemia (ET), CMPD/unclassifiable (CMPD-U), chronic neutrophilic leukemia, and chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome, all to be delineated from BCR/ABL-positive chronic myeloid leukemia (CML). After 2001, the detection of the high frequency of the JAK2V617F mutation in PV, CIMF, and ET, and of the FIP1L1–PDGFRA fusion gene in CEL further added important information in the diagnosis of CMPD. These findings also enhanced the importance of tyrosine kinase mutations in CMPD and paved the way to a more detailed classification and to an improved definition of prognosis using also novel minimal residual disease (MRD) markers. Simultaneously, the broadening of therapeutic strategies in the CMPD, e.g., due to reduced intensity conditioning in allogeneic hematopoietic stem cell transplantation and the introduction of tyrosine kinase inhibitors in CML, in CEL, and in other ABL and PDGRFB rearrangements, increased the demands to diagnostics. Therefore, today, a multimodal diagnostic approach combining cytomorphology, cytogenetics, and individual molecular methods is needed in BCR/ABL-negative CMPD. A stringent diagnostic algorithm for characterization, choice of treatment, and monitoring of MRD will be proposed in this review

    Probing Real Sensory Worlds of Receivers with Unsupervised Clustering

    Get PDF
    The task of an organism to extract information about the external environment from sensory signals is based entirely on the analysis of ongoing afferent spike activity provided by the sense organs. We investigate the processing of auditory stimuli by an acoustic interneuron of insects. In contrast to most previous work we do this by using stimuli and neurophysiological recordings directly in the nocturnal tropical rainforest, where the insect communicates. Different from typical recordings in sound proof laboratories, strong environmental noise from multiple sound sources interferes with the perception of acoustic signals in these realistic scenarios. We apply a recently developed unsupervised machine learning algorithm based on probabilistic inference to find frequently occurring firing patterns in the response of the acoustic interneuron. We can thus ask how much information the central nervous system of the receiver can extract from bursts without ever being told which type and which variants of bursts are characteristic for particular stimuli. Our results show that the reliability of burst coding in the time domain is so high that identical stimuli lead to extremely similar spike pattern responses, even for different preparations on different dates, and even if one of the preparations is recorded outdoors and the other one in the sound proof lab. Simultaneous recordings in two preparations exposed to the same acoustic environment reveal that characteristics of burst patterns are largely preserved among individuals of the same species. Our study shows that burst coding can provide a reliable mechanism for acoustic insects to classify and discriminate signals under very noisy real-world conditions. This gives new insights into the neural mechanisms potentially used by bushcrickets to discriminate conspecific songs from sounds of predators in similar carrier frequency bands

    How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine

    Get PDF
    Carcinogenesis is an evolutionary process that establishes the ‘hallmarks of cancer' by natural selection of cell clones that have acquired advantageous heritable characteristics. Evolutionary adaptation has also been proposed as a mechanism that promotes drug resistance during systemic cancer therapy. This review summarises the evidence for the evolution of resistance to cytotoxic and targeted anti-cancer drugs according to Darwinian models and highlights the roles of genomic instability and high intra-tumour genetic heterogeneity as major accelerators of this evolutionary process. Clinical implications and strategies that may prevent the evolution of resistance or target the origins of genetic heterogeneity are discussed. New technologies to measure intra-tumour heterogeneity and translational research on serial biopsies of cancer lesions during and after therapeutic intervention are identified as key areas to further the understanding of determinants and mechanisms of the evolution of drug resistance

    GILZ inhibits the mTORC2/AKT pathway in BCR-ABL+ cells

    Get PDF
    The malignant phenotype of chronic myeloid leukemia (CML) is due to the abnormal tyrosine kinase activity of the BCR-ABL oncoprotein, which signals several downstream cell survival pathways, including phosphoinositide 3-kinase/AKT, signal transducer and activator of transcription 5 and extracellular signal-regulated kinase 1/2. In patients with CML, tyrosine kinase inhibitors (TKIs) are used to suppress the BCR-ABL tyrosine kinase, resulting in impressive response rates. However, resistance can occur, especially in acute-phase CML, through various mechanisms. Here, we show that the glucocorticoid-induced leucine zipper protein (GILZ) modulates imatinib and dasatinib resistance and suppresses tumor growth by inactivating the mammalian target of rapamycin complex-2 (mTORC2)/AKT signaling pathway. In mouse and human models, GILZ binds to mTORC2, but not to mTORC1, inhibiting phosphorylation of AKT (at Ser473) and activating FoxO3a-mediated transcription of the pro-apoptotic protein Bim; these results demonstrate that GILZ is a key inhibitor of the mTORC2 pathway. Furthermore, CD34+ stem cells isolated from relapsing CML patients underwent apoptosis and showed inhibition of mTORC2 after incubation with glucocorticoids and imatinib. Our findings provide new mechanistic insights into the role of mTORC2 in BCR-ABL+ cells and indicate that regulation by GILZ may influence TKI sensitivity
    corecore