3,095 research outputs found

    A comment on "Amplification of endpoint structure for new particle mass measurement at the LHC"

    Full text link
    We present a comment on the kinematic variable mCT2m_{CT2} recently proposed in "Amplification of endpoint structure for new particle mass measurement at the LHC". The variable is designed to be applied to models such as R-parity conserving Supersymmetry (SUSY) when there is pair production of new heavy particles each of which decays to a single massless visible and a massive invisible component. It was proposed in "Amplification of endpoint structure for new particle mass measurement at the LHC" that a measurement of the peak of the mCT2m_{CT2} distribution could be used to precisely constrain the masses of the SUSY particles. We show that when Standard Model backgrounds are included in simulations, the sensitivity of the mCT2m_{CT2} variable to the SUSY particle masses is more seriously impacted for mCT2m_{CT2} than for other previously proposed variables.Comment: 5 page

    The stransverse mass, MT2, in special cases

    Full text link
    This document describes some special cases in which the stransverse mass, MT2, may be calculated by non-iterative algorithms. The most notable special case is that in which the visible particles and the hypothesised invisible particles are massless -- a situation relevant to its current usage in the Large Hadron Collider as a discovery variable, and a situation for which no analytic answer was previously known. We also derive an expression for MT2 in another set of new (though arguably less interesting) special cases in which the missing transverse momentum must point parallel or anti parallel to the visible momentum sum. In addition, we find new derivations for already known MT2 solutions in a manner that maintains manifest contralinear boost invariance throughout, providing new insights into old results. Along the way, we stumble across some unexpected results and make conjectures relating to geometric forms of M_eff and H_T and their relationship to MT2.Comment: 11 pages, no figures. v2 corrects minor typos. v3 corrects an incorrect statement in footnote 8 and inserts a missing term in eq (3.9). v4 and v5 correct minor typos spotted by reader

    SUSY and Dark Matter Constraints from the LHC

    Get PDF
    The ability of the LHC to make statements about the dark matter problem is considered, with a specific focus on supersymmetry. After reviewing the current strategies for supersymmetry searches at the LHC (in both CMS and ATLAS), some key ATLAS studies are used to demonstrate how one could establish that SUSY exists before going on to measure the relic density of a neutralino WIMP candidate. Finally, the general prospects for success at the LHC are investigated by looking at different points in the MSSM parameter space.Comment: Talk given at the XLIrst Rencontres de Moriond session devoted to Electroweak Interactions And Unified Theories in March 2006, to be published in the associated proceedings. 10 pages, 8 figure

    Supersymmetric particle mass measurement with invariant mass correlations

    Full text link
    The kinematic end-point technique for measuring the masses of supersymmetric particles in R-Parity conserving models at hadron colliders is re-examined with a focus on exploiting additional constraints arising from correlations in invariant mass observables. The use of such correlations is shown to potentially resolve the ambiguity in the interpretation of quark+lepton end-points and enable discrimination between sequential two-body and three-body lepton-producing decays. The use of these techniques is shown to improve the SUSY particle mass measurement precision for the SPS1a benchmark model by at least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and small clarifications to text; v3 adds some more clarifications to the tex

    Supersymmetric particle mass measurement with the boost-corrected contransverse mass

    Get PDF
    A modification to the contransverse mass (MCT) technique for measuring the masses of pair-produced semi-invisibly decaying heavy particles is proposed in which MCT is corrected for non-zero boosts of the centre-of-momentum (CoM) frame of the heavy states in the laboratory transverse plane. Lack of knowledge of the mass of the CoM frame prevents exact correction for this boost, however it is shown that a conservative correction can nevertheless be derived which always generates an MCT value which is less than or equal to the true value of MCT in the CoM frame. The new technique is demonstrated with case studies of mass measurement with fully leptonic ttbar events and with SUSY events possessing a similar final state.Comment: 33 pages, 33 .eps figures, JHEP3 styl

    Reducing combinatorial uncertainties: A new technique based on MT2 variables

    Get PDF
    We propose a new method to resolve combinatorial ambiguities in hadron collider events involving two invisible particles in the final state. This method is based on the kinematic variable MT2 and on the MT2-assisted-on-shell reconstruction of invisible momenta, that are reformulated as `test' variables Ti of the correct combination against the incorrect ones. We show how the efficiency of the single Ti in providing the correct answer can be systematically improved by combining the different Ti and/or by introducing cuts on suitable, combination-insensitive kinematic variables. We illustrate our whole approach in the specific example of top anti-top production, followed by a leptonic decay of the W on both sides. However, by construction, our method is also directly applicable to many topologies of interest for new physics, in particular events producing a pair of undetected particles, that are potential dark-matter candidates. We finally emphasize that our method is apt to several generalizations, that we outline in the last sections of the paper.Comment: 1+23 pages, 8 figures. Main changes in v3: (1) discussion at the end of sec. 2 improved; (2) added sec. 4.2 about the method's dependence on mass information. Matches journal versio

    Guide to transverse projections and mass-constraining variables

    Full text link
    This paper seeks to demonstrate that many of the existing mass-measurement variables proposed for hadron colliders (mT, mEff, mT2, missing pT, hT, rootsHatMin, etc.) are far more closely related to each other than is widely appreciated, and indeed can all be viewed as a common mass bound specialized for a variety of purposes. A consequence of this is that one may understand better the strengths and weaknesses of each variable, and the circumstances in which each can be used to best effect. In order to achieve this, we find it necessary first to revisit the seemingly empty and infertile wilderness populated by the subscript "T" (as in pT) in order to remind ourselves what this process of transversification actually means. We note that, far from being simple, transversification can mean quite different things to different people. Those readers who manage to battle through the barrage of transverse notation distinguishing mass-preserving projections from velocity preserving projections, and `early projection' from `late projection', will find their efforts rewarded towards the end of the paper with (i) a better understanding of how collider mass variables fit together, (ii) an appreciation of how these variables could be generalized to search for things more complicated than supersymmetry, (iii) will depart with an aversion to thoughtless or naive use of the so-called `transverse' methods of any of the popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be explicit about which of the 61 identified variants of the `transverse mass' they are employing.Comment: 47 pages, 15 figures. v2: Title change for journal, and minor typographical correction

    Initial determination of the spins of the gluino and squarks at LHC

    Full text link
    In principle particle spins can be measured from their production cross sections once their mass is approximately known. The method works in practice because spins are quantized and cross sections depend strongly on spins. It can be used to determine, for example, the spin of the top quark. Direct application of this method to supersymmetric theories will have to overcome the challenge of measuring mass at the LHC, which could require high statistics. In this article, we propose a method of measuring the spins of the colored superpatners by combining rate information for several channels and a set of kinematical variables, without directly measuring their masses. We argue that such a method could lead to an early determination of the spin of gluino and squarks. This method can be applied to the measurement of spin of other new physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change

    Measuring Invisible Particle Masses Using a Single Short Decay Chain

    Full text link
    We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is na\"ively expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log(E1T/E2T)\log(E_{1T}/E_{2T}) vs. invariant mass-squared plane, where E1TE_{1T}, E2TE_{2T} are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure

    On Measuring Split-SUSY Neutralino and Chargino Masses at the LHC

    Full text link
    In Split-Supersymmetry models, where the only non-Standard Model states produceable at LHC-energies consist of a gluino plus neutralinos and charginos, it is conventionally accepted that only mass differences among these latter are measureable at the LHC. The present work shows that application of a simple `Kinematic Selection' technique allows full reconstruction of neutralino and chargino masses from one event, in principle. A Monte Carlo simulation demonstrates the feasibilty of using this technique at the LHC.Comment: 17 pages, 4 figures; EPJC versio
    corecore