6,700 research outputs found

    Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum

    Get PDF
    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value

    Far-infrared photometry of compact extragalactic sources: OJ 187 and BL Lac

    Get PDF
    The 50 and 100 micron emissions of OJ 287 were detected and upper limits for BL Lac were obtained. These first measurements of two BL Lac objects in the far-infrared show them to be similar to the few quasars previously observed in the far-infrared. In particular, there is no evidence for significant dust emission, and the lambda approximately 100 micron flux density fits on a smooth line joining the near-infrared and millimeter continuum fluxes. The implications of the results for models of the sources are discussed briefly

    An infrared study of the bi-polar outflow region GGD 12-15

    Get PDF
    Infrared observations from 1 to 100 microns are presented for the region associated with a bipolar CO outflow source near the nebulous objects GGD 12 to 15. A luminous far-infrared source was found associated with a radio-continuum source in the area. This object appears to be a compact HII region around a nearly main-sequence BO star. A faint 20 micron source was also discovered at the position of an H2O maser 3O deg northwest of the HII region. This object appears to be associated with but not coincident with a 2 micron reflection nebula. This structure serves as evidence for a non-spherically symmetric, possibly disk-like dust distribution around the exciting star for the maser. This object probably powers the bi-polar CO outflow although its luminosity is less than 10% that of the star which excites the compact HII region. A number of other 2 micron sources found in the area are probably members of a recently formed cluster

    Image restoration and superresolution as probes of small scale far-IR structure in star forming regions

    Get PDF
    Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed

    Death Anxiety, Reliability, Validity, and Factorial Structure of the Farsi Form of the Arabic Scale of Death Anxiety in Iranian Old-Aged Persons

    Get PDF
    The present study is aimed at examining the level of death anxiety and the sex-related differences among old-aged Iranian individuals sample to compare the old-aged persons with young college students and to explore the psychometric properties of the Arabic Scale of Death Anxiety (ASDA) factors in old-aged sample. A sample of 146 volunteer Iranian individuals took part in the study. The mean ages were 68.58 (SD = 7.10), men 68.81 (SD = 7.44) and women 68.28 (SD = 6.76), respectively. The mean score of the ASDA was 51.09 (SD = 20.19). Cronbach's alpha of the ASDA was found to be high (0.94); and Spearman-Brown coefficient was 0.92. Women had a significantly higher mean total score on the ASDA. Old-aged individuals had a significantly higher mean ASDA total score than younger college students (M age = 25.77). The factor analysis of the ASDA items yielded three factors accounting for 67.88 of the total variance labeled (F1) fear of dead people and tombs; (F2) fear of lethal disease and postmortem events; and (F3) death fear. These factors were highly replicable with previous factors extracted from a middle-aged Kuwaiti sample. On the basis of the present results, there are the following three general conclusions: death anxiety is not significantly correlated with age; the sex-related differences on death anxiety are striking in the Iranian samples; and the ASDA has a highly replicable factor structure among two Iranian and Arab countries. © 2016 Mahboubeh Dadfar et al

    Bistability patterns and nonlinear switching with very high contrast ratio in a 1550 nm quantum dash semiconductor laser

    Get PDF
    We report on the experimental observation of optical bistability (OB) and nonlinear switching (NS) in a nanostructure laser; specifically a 1550 nm quantum dash Fabry-Perot laser subject to external optical injection and operated in reflection. Different shapes of optical bistability and nonlinear switching, anticlockwise and clockwise, with very high on-off contrast ratio (up to 180:1) between output states were experimentally measured. These results added to the potential of nanostructure lasers for enhanced performance offer promise for use in fast all-optical signal processing applications in optical networks. © 2012 American Institute of Physics

    A far-infrared study of N/O abundance ratio in galactic H 2 regions

    Get PDF
    Far-infrared lines of N++ and O++ in several galactic H II regions were measured in an effort to probe the abundance ratio N/O. New measurements are presented for W32 (630.8-0.0), Orion A, and G75.84+0.4. The combination of (N III) 57.3 millimicrons and (O III) 88.4 and 51.8 millimicrons yields measurements of N++/O++ that are largely insensitive to electron temperature, density uncertainties, and to clumping of the ionized gas, due to the similarity of the critical densities for these transitions. In the observed nebulae, N++/O++ should be indicative of N/O, a ratio that is of special importance in nucleosynthesis theory. Measurements are compared with previous measurements of M17 and W51. For nebulae in the solar circle, N++/O++ is greater than the N/O values derived from optical studies of N+/O+ in low ionization zones of the same nebulae. We find that N++/O++ in W43 is significantly higher than for the other H II regions in the sample. Since W43 is located at R = 5 kpc, which is the smallest galactocentric distance in our sample, our data appear consistent with the presence of a negative abundance gradient d(N/O)dR

    The compact far infrared emission from the young stellar object IRAS 16293-2422

    Get PDF
    High resolution far IR observations at 50 and 100 microns were made of the young stellar object (YSO), IRAS 16293-2422. The observations are part of a systematic high resolution study of nearby YSO's. The purpose is to obtain resolution in the far IR comparable to that at other wavelengths. Until recently, the high resolution that has been available in the far IR has been from either IRAS (angular resolution of approx 4 min) or the KAO using standard FIR photometry (approx 35 sec). With scanning techniques, it is possible to obtain 10 sec resolution on bright sources. Such a resolution is necessary to better determine the physical conditions of the YSO, and to compare with model of star formation. In order to better constrain the models for the source, the YSO was observed at both 50 and 100 microns on several flights in 1988 April from the KAO. Estimates are presented of the size both along the major and minor axis of the disk, as well as estimates of the dust temperature and 100 micron opacity for the YSO

    Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    Get PDF
    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc

    Star formation in the inner galaxy: A far-infrared and radio study of two H2 regions

    Get PDF
    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated
    corecore