53 research outputs found

    Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Get PDF
    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process

    Guiding principles for rewilding

    Get PDF
    There has been much recent interest in the concept of rewilding as a tool for nature conservation, but also confusion over the idea, which has limited its utility. We developed a unifying definition and 10 guiding principles for rewilding through a survey of 59 rewilding experts, a summary of key organizations’ rewilding visions, and workshops involving over 100 participants from around the world. The guiding principles convey that rewilding exits on a continuum of scale, connectivity, and level of human influence and aims to restore ecosystem structure and functions to achieve a self-sustaining autonomous nature. These principles clarify the concept of rewilding and improve its effectiveness as a tool to achieve global conservation targets, including those of the UN Decade on Ecosystem Restoration and post-2020 Global Biodiversity Framework. Finally, we suggest differences in rewilding perspectives lie largely in the extent to which it is seen as achievable and in specific interventions. An understanding of the context of rewilding projects is the key to success, and careful site-specific interpretations will help achieve the aims of rewilding

    Fine-mapping host genetic variation underlying outcomes to Mycobacterium bovis infection in dairy cows

    Get PDF
    Abstract Background Susceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics. However, cattle diagnosed as infected with M. bovis display varying signs of pathology. The variation in host response to infection could represent a continuum since time of exposure or distinct outcomes due to differing pathogen handling. The relationships between host genetics and variation in host response and pathological sequelae following M. bovis infection were explored by genotyping 1966 Holstein-Friesian dairy cows at 538,231 SNPs with three distinct phenotypes. These were: single intradermal cervical comparative tuberculin (SICCT) test positives with visible lesions (VLs), SICCT-positives with undetected visible lesions (NVLs) and matched controls SICCT-negative on multiple occasions. Results Regional heritability mapping identified three loci associated with the NVL phenotype on chromosomes 17, 22 and 23, distinct to the region on chromosome 13 associated with the VL phenotype. The region on chromosome 23 was at genome-wide significance and candidate genes overlapping the mapped window included members of the bovine leukocyte antigen class IIb region, a complex known for its role in immunity and disease resistance. Chromosome heritability analysis attributed variance to six and thirteen chromosomes for the VL and NVL phenotypes, respectively, and four of these chromosomes were found to explain a proportion of the phenotypic variation for both the VL and NVL phenotype. By grouping the M. bovis outcomes (VLs and NVLs) variance was attributed to nine chromosomes. When contrasting the two M. bovis infection outcomes (VLs vs NVLs) nine chromosomes were found to harbour heritable variation. Regardless of the case phenotype under investigation, chromosome heritability did not exceed 8% indicating that the genetic control of bTB resistance consists of variants of small to moderate effect situated across many chromosomes of the bovine genome. Conclusions These findings suggest the host genetics of M. bovis infection outcomes is governed by distinct and overlapping genetic variants. Thus, variation in the pathology of M. bovis infected cattle may be partly genetically determined and indicative of different host responses or pathogen handling. There may be at least three distinct outcomes following M. bovis exposure in dairy cattle: resistance to infection, infection resulting in pathology or no detectable pathology

    Quantum well infrared photodetector for the SWIR range

    No full text
    An InGaAs/InAlAs superlattice infrared photodetector is developed to reach the forbidden gap in the SWIR range for arsenides, between 1.7 and 2.5 μm, appropriate for surveillance imaging. The figures of merit of the device are determined to be 120 K for the BLIP temperature and 2.1 mA/W and 3 × 106 Jones for the best responsivity and detectivity, respectively, obtained at 120 K under +4 V bias. Possible approaches to improve the device performance are addressed152363370International conference of research applied to defense and securit
    corecore