22 research outputs found

    Intestinal macrophages: differentiation and involvement in intestinal immunopathologies

    Get PDF
    Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discusse

    In Vitro Induction of Mucosa-Type Dendritic Cells by All- Trans

    No full text

    CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions

    No full text
    Intestinal mononuclear phagocytes (iMNP) are critically involved in mucosal immunity and tissue homeostasis. Two major non-overlapping populations of iMNP have been identified in mice. CD103(+) iMNP represent a migratory population capable of inducing tolerogenic responses, whereas CX3CR1(+) iMNP are resident cells with disease-promoting potential. CX3CR1(+) iMNP can further be subdivided based on differential expression of CX3CR1. Using CX3CR1(GFP/+) ×RAG2(-/-) mice, we demonstrate that CX3CR1(hi) and CX3CR1(lo) iMNP clearly differ with respect to their morphological and functional properties. Compared with CX3CR1(hi) iMNP, CX3CR1(lo) iMNP are polarised towards pro-inflammatory responses already under homeostatic conditions. During a CD4(+) T-cell-induced colitis, CX3CR1(lo) cells accumulate in the inflamed mucosa and upregulate the expression of pro-inflammatory cytokines and triggering receptor expressed on myeloid cells-1 (TREM-1). In contrast, CX3CR1(hi) iMNP retain their non-inflammatory profile even during intestinal inflammation. These findings identify two functionally distinct iMNP subsets based on differential expression of CX3CR1 and indicate an unanticipated stability of iMNP

    Virus-Induced Activation of Self-Specific TCRαβ CD8αα Intraepithelial Lymphocytes Does Not Abolish Their Self-Tolerance in the Intestine

    No full text
    TCRalphabeta CD8alphaalpha intestinal intraepithelial lymphocytes (IEL) represent an enigmatic subset of T cells, particularly, in regard to their potential functions and the apparent persistence of cells expressing self-specific TCR. We have used mice that are transgenic for the TCRalphabeta specific for the lymphocytic choriomeningitis virus (LCMV)-derived peptide gp33, and TCRalphabeta-transgenic mice that coexpress the gp33 Ag ubiquitously, to analyze the functional properties of TCRalphabeta CD8alphaalpha IEL in the presence, or absence, of their specific MHC-restricted Ag, and to assess the impact of molecular mimicry during a potent LCMV infection on potentially self-reactive TCRalphabeta CD8alphaalpha IEL. In this study, we show that the presence of the specific self-Ag results in reduced expression of IL-2, IFN-gamma, and IL-10 by resident TCRalphabeta CD8alphaalpha IEL while expression of mRNA for TGFbeta is not affected. We further demonstrate that despite their secluded location in the epithelium, TCRalphabeta CD8alphaalpha IEL are activated after infection of the intestinal mucosa with LCMV. Importantly, LCMV-induced activation of self-specific TCRalphabeta CD8alphaalpha IEL does not reverse their tolerance as no cytotoxic activity or up-regulated expression of proinflammatory cytokines is detected and no overt signs of autoimmunity are seen. Taken together, these results are in support of an immunoregulatory role for self-specific TCRalphabeta CD8alphaalpha in the intestinal mucosa and clearly speak against an involvement of this cell subset in inflammatory reactions and tissue destruction

    Virus-induced activation of self-specific TCR alpha beta CD8 alpha alpha intraepithelial lymphocytes does not abolish their self-tolerance in the intestine.

    No full text
    TCRalphabeta CD8alphaalpha intestinal intraepithelial lymphocytes (IEL) represent an enigmatic subset of T cells, particularly, in regard to their potential functions and the apparent persistence of cells expressing self-specific TCR. We have used mice that are transgenic for the TCRalphabeta specific for the lymphocytic choriomeningitis virus (LCMV)-derived peptide gp33, and TCRalphabeta-transgenic mice that coexpress the gp33 Ag ubiquitously, to analyze the functional properties of TCRalphabeta CD8alphaalpha IEL in the presence, or absence, of their specific MHC-restricted Ag, and to assess the impact of molecular mimicry during a potent LCMV infection on potentially self-reactive TCRalphabeta CD8alphaalpha IEL. In this study, we show that the presence of the specific self-Ag results in reduced expression of IL-2, IFN-gamma, and IL-10 by resident TCRalphabeta CD8alphaalpha IEL while expression of mRNA for TGFbeta is not affected. We further demonstrate that despite their secluded location in the epithelium, TCRalphabeta CD8alphaalpha IEL are activated after infection of the intestinal mucosa with LCMV. Importantly, LCMV-induced activation of self-specific TCRalphabeta CD8alphaalpha IEL does not reverse their tolerance as no cytotoxic activity or up-regulated expression of proinflammatory cytokines is detected and no overt signs of autoimmunity are seen. Taken together, these results are in support of an immunoregulatory role for self-specific TCRalphabeta CD8alphaalpha in the intestinal mucosa and clearly speak against an involvement of this cell subset in inflammatory reactions and tissue destruction

    Sensitizing antigen-specific CD8(+) T cells for accelerated suicide causes immune incompetence

    Get PDF
    Death receptor–mediated activation-induced apoptosis of antigen-specific T cells is a major mechanism of peripheral tolerance induction and immune homeostasis. Failure to undergo activation-induced cell death (AICD) is an important underlying cause of many autoimmune diseases. Thus, enhancing the T cell’s own suicide mechanism may provide an efficient therapy for the treatment of autoimmune diseases. Bisindolylmaleimide VIII (Bis VIII), a PKC inhibitor, can sensitize T cells for death receptor–induced apoptosis and thus can inhibit the development of T cell–mediated autoimmune disease in vivo. In this study, we have analyzed the functional consequences of accelerated suicide for a protective CD8(+) T cell–mediated immune response. Our data indicate that CD8(+) T cells are sensitized by Bis VIII to AICD, both in vitro and in vivo. The sensitizing effect of Bis VIII appears to be mediated by specific downmodulation of the antiapoptotic molecule cellular FLICE-like inhibitory protein (cFLIP(L)). Importantly, Bis VIII administration during an acute lymphocytic choriomeningitis virus (LCMV) infection causes the depletion of virus-specific CD8(+) T cells and subsequently impaired cytotoxicity and virus clearance. We conclude that resistance to death receptor–induced apoptosis is crucial for the efficient induction of a protective immune response, and that Bis VIII–based immunotherapies have to be applied under well-controlled conditions to avoid the induction of immune incompetence and the inability to respond to pathogen infection

    TREM-1 promotes intestinal tumorigenesis.

    Get PDF
    Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune responses. Increasing evidence suggests a role for TREM-1 not only in acute pathogen-induced reactions but also in chronic and non-infectious inflammatory disorders, including various types of cancer. Here, we demonstrate that genetic deficiency in Trem1 protects from colorectal cancer. In particular, Trem1 (-/-) mice exhibited reduced tumor numbers and load in an experimental model of inflammation-driven tumorigenesis. Gene expression analysis of Trem1 (-/-) versus Trem1 (+/+) tumor tissue demonstrated distinct immune signatures. Whereas Trem1 (-/-) tumors showed an increased abundance of transcripts linked to adaptive immunity, Trem1 (+/+) tumors were characterized by overexpression of innate pro-inflammatory genes associated with tumorigenesis. Compared to adjacent tumor-free colonic mucosa, expression of Trem1 was increased in murine and human colorectal tumors. Unexpectedly, TREM-1 was not detected on tumor-associated Ly6C(-) MHC class II(+) macrophages. In contrast, TREM-1 was highly expressed by tumor-infiltrating neutrophils which represented the predominant myeloid population in Trem1 (+/+) but not in Trem1 (-/-) tumors. Collectively, our findings demonstrate a clear role of TREM-1 for intestinal tumorigenesis and indicate TREM-1-expressing neutrophils as critical players in colorectal tumor development

    TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance.

    Get PDF
    Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1(-/-) mice are viable, fertile and show no altered hematopoietic compartment. In CD4(+) T cell- and dextran sodium sulfate-induced models of colitis, Trem1(-/-) mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1(-/-) mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1(-/-) mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1(-/-) mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1(+/+) controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control
    corecore