22 research outputs found

    Macrophage Exposure to Polycyclic Aromatic Hydrocarbons From Wood Smoke Reduces the Ability to Control Growth of Mycobacterium tuberculosis

    Get PDF
    Use of solid fuels for cooking or home heating has been related to various diseases of the respiratory tract. Woodsmoke contains a mixture of carcinogenic polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds. Inhalation of these materials induces local and systemic changes in the immune system which may impair critical cell defense mechanisms; however, few studies have investigated the early effects that PAH exposures have on immune cells as macrophages. The aim of this study was to analyze if the pre-exposure to PAHs derived from woodsmoke deteriorates macrophage ability to control the intracellular growth of Mycobacterium tuberculosis. By using an in vitro experimental model, we analyzed the phenotype and some metabolic changes on THP-1 and monocyte-derived macrophages. Our results demonstrated that exposure to PAHs leads to cell activation and deteriorates mitochondrial function of the macrophage thus facilitating growth of M. tuberculosis

    IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19

    Get PDF
    Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19

    Estabilidad global para un modelo matemático sobre la respuesta inmune innata de macrófagos contra el Micobacterium tuberculosis

    No full text
    El resurgimiento mundial de la Tuberculosis ha subrayado la necesidad de mejorar las estrategias para su control. Recientemente se ha puesto de manifiesto que, con el fin de desarrollar una vacuna más eficaz, una mejor comprensión de la relación entre la respuesta inmune del huésped y el bacilo tuberculoso es necesaria. La respuesta innata de macrófagos contra la Tuberculosis desempeña un papel fundamental en el resultado de infección por Mycobacterium tuberculosis. En este trabajo formulamos y analizamos un modelo matemático para describir la dinámica de la respuesta inmune de los macrófagos contra el Mycobacterium tuberculosis, dentro del contexto de la inmunología innata. La dinámica del modelo esta dada en términos del número reproductivo básico R0, un umbral que ha sido ampliamente utilizado en el entendimiento de la persistencia de infecciones virales o bacteriales dentro de individuos. El análisis del modelo revela la existencia de dos estados de equilibrio, el estado libre de infección y el estado endémicamente infectado

    Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability

    No full text
    Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies

    Tuberculosis en tiempos de COVID-19: cambios y oportunidades

    Get PDF
    This study discusses how the endTB project, which had the aim to eradicate tuberculosis by 2030, has been affected by addressing emerging pathologies; consequently, an increase in the rate of infection and mortality by tuberculosis was reported in 2021. Although the scientific community focuses on COVID-19, we cannot forget tuberculosis. Both pathologies show important similarities, which suggest that investment in research in both study fields can be used to develop new diagnostic and therapeutic strategies for both pathologies. The analysis of tuberculosis, an infectious disease that is a public health problem worldwide, under the COVID-19 context is helpful to highlight the shortcomings of health systems worldwide. Se discute cĂłmo el proyecto End TB, que planteaba erradicar la tuberculosis para 2030, se ha visto afectado por atender patologĂ­as emergentes; en consecuencia, su tasa de infecciĂłn y mortalidad incrementĂł en 2021. Aunque la atenciĂłn de la comunidad cientĂ­fica está centrada en COVID-19, no debe olvidarse a la tuberculosis. Ambas patologĂ­as muestran importantes similitudes, las cuales permiten sugerir que la inversiĂłn en la investigaciĂłn conjunta puede aprovecharse para el desarrollo de nuevas estrategias diagnĂłsticas y terapĂ©uticas. Analizar la tuberculosis, enfermedad infecciosa que es un problema de salud pĂşblica, en el contexto de la pandemia por COVID-19 ayuda a evidenciar las carencias de los sistemas de salud en el mundo.&nbsp

    Lipoarabinomannan Decreases Galectin-9 Expression and Tumor Necrosis Factor Pathway in Macrophages Favoring Mycobacterium tuberculosis Intracellular Growth

    No full text
    Lipoarabinomannan (LAM) is a lipid virulent factor secreted by Mycobacterium tuberculosis (Mtb). LAM can be found in the sputum and urine of patients with active tuberculosis. When human monocytes are differentiated into macrophages [monocyte-derived macrophages (MDM)] in the presence of LAM, MDM are poorly functional which may limit the immune response to Mtb infection. Our previous studies have shown that TIM3 and galectin (GAL)9 interaction induces anti-mycobacterial activity, and the expression levels of TIM3 and GAL9 are downregulated during Mtb infection. We postulated that LAM affects GAL9/TIM3 pathway, and, in consequence, the ability of the macrophage to control bacterial growth could be affected. In this work, we have generated MDM in the presence of LAM and observed that the expression of TIM3 was not affected; in contrast, GAL9 expression was downregulated at the transcriptional and protein levels. We observed that the cell surface and the soluble form of tumor necrosis factor (TNF) receptor 2 were decreased. We also found that when LAM-exposed MDM were activated with LPS, they produced less TNF, and the transcription factor proteinase-activated receptor-2 (PAR2), which is involved in host immune responses to infection, was not induced. Our data show that LAM-exposed MDM were deficient in the control of intracellular growth of Mtb. In conclusion, LAM-exposed MDM leads to MDM with impaired intracellular signal activation affecting GAL9, TNF, and PAR2 pathways, which are important to restrict Mtb growth

    Pre-exposure of Mycobacterium tuberculosis-infected macrophages to crystalline silica impairs control of bacterial growth by deregulating the balance between apoptosis and necrosis.

    Get PDF
    Inhalation of crystalline silica (CS) particles increases the risk of pulmonary tuberculosis; however, the precise mechanism through which CS exposure facilitates Mycobacterium tuberculosis (Mtb) infection is unclear. We speculate that macrophage exposure to CS deregulates the cell death pathways that could explain, at least in part, the association observed between exposure to CS and pulmonary tuberculosis. We therefore established an in vitro model in which macrophages were exposed to CS and then infected with Mtb. Expression of surface markers was analyzed by flow cytometry, JNK1/2, ASK1, caspase 9, P-p38, Bcl-2 and Mcl-1 were analyzed by Western blot, and cytokines by ELISA. Our results show that exposure to CS limits macrophage ability to control Mtb growth. Moreover, this exposure reduced the expression of TLR2, Bcl-2 and Mcl-1, but increased that of JNK1 and ASK1 molecules in the macrophages. Finally, when the pre-exposed macrophages were infected with Mtb, the concentrations of TNFα, IL-1β and caspase-9 expression increased. This pro-inflammatory profile of the macrophage unbalanced the apoptosis/necrosis pathway. Taken together, these data suggest that macrophages exposed to CS are sensitized to cell death by MAPK kinase-dependent signaling pathway. Secretion of TNF-α and IL-1β by Mtb-infected macrophages promotes necrosis, and this deregulation of cell death pathways may favor the release of viable bacilli, thus leading to the progression of tuberculosis

    Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    No full text
    Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses
    corecore