65 research outputs found

    Rapid diagnosis of pulmonary tuberculosis in African children in a primary care setting by use of Xpert MTB/RIF on respiratory specimens: a prospective study

    Get PDF
    Background In children admitted to hospital, rapid, accurate diagnosis of pulmonary tuberculosis with the Xpert MTB/RIF assay is possible, but no paediatric studies have been done in the primary care setting, where most children are given care, and where microbiological diagnosis is rarely available. We assessed the diagnostic accuracy of Xpert MTB/RIF in children in primary care. Methods For this prospective study, we obtained repeat induced sputum and nasopharyngeal aspirate specimens from children (<15 years) with suspected pulmonary tuberculosis at a clinic in Khayeliwtsha, Cape Town, South Africa. We compared the diagnostic accuracy of Xpert MTB/RIF with a reference standard of culture and smear microscopy on induced sputum specimens. For the main analysis, specifi city of Xpert MTB/RIF versus liquid culture, we included only children with two interpretable Xpert MTB/RIF and induced sputum culture results. Findings Between Aug 1, 2010, and July 30, 2012, we enrolled 384 children (median age 38·3 months, IQR 21·2–56·5) who had one paired induced sputum and nasopharyngeal specimen, 309 (81%) of whom had two paired specimens. Five children (1%) tested positive for tuberculosis by smear microscopy, 26 (7%) tested positive by Xpert MTB/RIF, and 30 (8%) tested positive by culture. Xpert MTB/RIF on two induced sputum specimens detected 16 of 28 culture-confi rmed cases (sensitivity of 57·1%, 95% CI 39·1–73·5) and on two nasopharyngeal aspirates detected 11 of 28 culture-confi rmed cases (sensitivity of 39·3, 23·6–57·6; p=0·18). The specifi city of Xpert MTB/RIF on induced sputum was 98·9% (95% CI 96·9–99·6) and on nasopharyngeal aspirates was 99·3% (97·4–99·8). Interpretation Our fi ndings suggest that Xpert MTB/RIF on respiratory secretions is a useful test for rapid diagnosis of paediatric pulmonary tuberculosis in primary care. Funding National Institutes of Health, National Health Laboratory Services Research Trust, the Medical Research Council of South Africa, the National Research Foundation South Africa, the European and Developing Countries Clinical Trials Partnership

    Adherence to isoniazid prophylaxis among HIV-infected children: a randomized controlled trial comparing two dosing schedules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis contributes significantly to morbidity and mortality among HIV-infected children in sub-Saharan Africa. Isoniazid prophylaxis can reduce tuberculosis incidence in this population. However, for the treatment to be effective, adherence to the medication must be optimized. We investigated adherence to isoniazid prophylaxis administered daily, compared to three times a week, and predictors of adherence amongst HIV-infected children.</p> <p>Methods</p> <p>We investigated adherence to study medication in a two centre, randomized trial comparing daily to three times a week dosing of isoniazid. The study was conducted at two tertiary paediatric care centres in Cape Town, South Africa. Over a 5 year period, we followed 324 HIV-infected children aged ≥ 8 weeks. Adherence information based on pill counts was available for 276 children. Percentage adherence was calculated by counting the number of pills returned. Adherence ≥ 90% was considered to be optimal. Analysis was done using summary and repeated measures, comparing adherence to the two dosing schedules. Mean percentage adherence (per child during follow-up time) was used to compare the mean of each group as well as the proportion of children achieving an adherence of ≥ 90% in each group. For repeated measures, percentage adherence (per child per visit) was dichotomized at 90%. A logistic regression model with generalized estimating equations, to account for within-individual correlation, was used to evaluate the impact of the dosing schedule. Adjustments were made for potential confounders and we assessed potential baseline and time-varying adherence determinants.</p> <p>Results</p> <p>The overall adherence to isoniazid was excellent, with a mean adherence of 94.7% (95% confidence interval [CI] 93.5-95.9); similar mean adherence was achieved by the group taking daily medication (93.8%; 95% CI 92.1-95.6) and by the three times a week group (95.5%; 95% CI 93.8-97.2). Two-hundred and seventeen (78.6%) children achieved a mean adherence of ≥ 90%. Adherence was similar for daily and three times a week dosing schedules in univariate (odds ratio [OR] 0.88; 95% CI 0.66-1.17; <it>P </it>= 0.38) and multivariate (adjusted OR 0.85; 95% CI 0.64-1.11; <it>P </it>= 0.23) models. Children from overcrowded homes were less adherent (adjusted OR 0.71; 95% CI 0.54-0.95; <it>P </it>= 0.02). Age at study visit was predictive of adherence, with better adherence achieved in children older than 4 years (adjusted OR 1.96; 95% CI 1.16-3.32; <it>P </it>= 0.01).</p> <p>Conclusion</p> <p>Adherence to isoniazid was excellent regardless of the dosing schedule used. Intermittent dosing of isoniazid prophylaxis can be considered as an alternative to daily dosing, without compromising adherence or efficacy.</p> <p>Trial registration</p> <p>Clinical Trials NCT00330304</p

    Urine lipoarabinomannan testing for diagnosis of pulmonary tuberculosis in children: a prospective study

    Get PDF
    Background Urine tests for mycobacterial lipoarabinomannan might be useful for point-of-care diagnosis of tuberculosis in adults with advanced HIV infection, but have not been assessed in children. We assessed the accuracy of urine lipoarabinomannan testing for the diagnosis of pulmonary tuberculosis in HIV-positive and HIV-negative children. Methods We prospectively recruited children (aged ≤15 years) who presented with suspected tuberculosis at a primary health-care clinic and paediatric referral hospital in South Africa, between March 1, 2009, and April 30, 2012. We assessed the diagnostic accuracy of urine lipoarabinomannan testing with lateral fl ow assay and ELISA, with mycobacterial culture of two induced sputum samples as the reference standard. Positive cultures were identifi ed by acid-fast staining and tested to confi rm Mycobacterium tuberculosis and establish susceptibility to rifampicin and isoniazid. Findings 535 children (median age 42·5 months, IQR 19·1–66·3) had urine and two induced specimens available for testing. 89 (17%) had culture-confi rmed tuberculosis and 106 (20%) had HIV. The lateral fl ow lipoarabinomannan test showed poor accuracy against the reference standard, with sensitivity of 48·3% (95% CI 37·6–59·2), specifi city of 60·8% (56·1–65·3), and an area under the receiver operating characteristic curve of 0·53 (0·46–0·60) for children without HIV and 0·64 (0·51–0·76) for children with HIV. ELISA had poor sensitivity in children without HIV (sensitivity 3·0%, 95% CI 0·4–10·5) and children with HIV (0%, 0·0–14·3); overall specifi city was 95·7% (93·4–97·4). Interpretation Urine lipoarabinomannan tests have insuffi cient sensitivity and specifi city to diagnose HIV-positive and HIV-negative children with tuberculosis and should not be used in this patient population

    Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort

    Get PDF
    Background: Bacteria colonizing the nasopharynx play a key role as gatekeepers of respiratory health. Yet, dynamics of early life nasopharyngeal (NP) bacterial profiles remain understudied in low- and middle-income countries (LMICs), where children have a high prevalence of risk factors for lower respiratory tract infection. We investigated longitudinal changes in NP bacterial profiles, and associated exposures, among healthy infants from low-income households in South Africa. Methods: We used short fragment (V4 region) 16S rRNA gene amplicon sequencing to characterize NP bacterial profiles from 103 infants in a South African birth cohort, at monthly intervals from birth through the first 12 months of life and six monthly thereafter until 30 months. Results: Corynebacterium and Staphylococcus were dominant colonizers at 1 month of life; however, these were rapidly replaced by Moraxella- or Haemophilus-dominated profiles by 4 months. This succession was almost universal and largely independent of a broad range of exposures. Warm weather (summer), lower gestational age, maternal smoking, no day-care attendance, antibiotic exposure, or low height-for-age z score at 12 months were associated with higher alpha and beta diversity. Summer was also associated with higher relative abundances of Staphylococcus, Streptococcus, Neisseria, or anaerobic gram-negative bacteria, whilst spring and winter were associated with higher relative abundances of Haemophilus or Corynebacterium, respectively. Maternal smoking was associated with higher relative abundances of Porphyromonas. Antibiotic therapy (or isoniazid prophylaxis for tuberculosis) was associated with higher relative abundance of anerobic taxa (Porphyromonas, Fusobacterium, and Prevotella) and with lower relative abundances of health associated-taxa Corynebacterium and Dolosigranulum. HIV-exposure was associated with higher relative abundances of Klebsiella or Veillonella and lower relative abundances of an unclassified genus within the family Lachnospiraceae. Conclusions: In this intensively sampled cohort, there was rapid and predictable replacement of early profiles dominated by health-associated Corynebacterium and Dolosigranulum with those dominated by Moraxella and Haemophilus, independent of exposures. Season and antibiotic exposure were key determinants of NP bacterial profiles. Understudied but highly prevalent exposures prevalent in LMICs, including maternal smoking and HIV-exposure, were associated with NP bacterial profiles

    Breath can discriminate tuberculosis from other lower respiratory illness in children

    Get PDF
    Pediatric tuberculosis (TB) remains a global health crisis. Despite progress, pediatric patients remain difficult to diagnose, with approximately half of all childhood TB patients lacking bacterial confirmation. In this pilot study (n = 31), we identify a 4-compound breathprint and subsequent machine learning model that accurately classifies children with confirmed TB (n = 10) from children with another lower respiratory tract infection (LRTI) (n = 10) with a sensitivity of 80% and specificity of 100% observed across cross validation folds. Importantly, we demonstrate that the breathprint identified an additional nine of eleven patients who had unconfirmed clinical TB and whose symptoms improved while treated for TB. While more work is necessary to validate the utility of using patient breath to diagnose pediatric TB, it shows promise as a triage instrument or paired as part of an aggregate diagnostic scheme

    Cytomegalovirus acquisition in infancy and the risk of tuberculosis disease in childhood: a longitudinal birth cohort study in Cape Town, South Africa

    Get PDF
    BACKGROUND: The risk of tuberculosis disease after recent exposure is greatest before age 5 years; however, the mechanisms explaining this increased risk are not well elucidated. Acquisition of viral infections, such as cytomegalovirus, in early life might modulate the immune system. We aimed to evaluate the acquisition of cytomegalovirus infection in infancy and the development of tuberculosis disease in children. METHODS: In this prospective, birth cohort study we enrolled pregnant women who were between 20 and 28 weeks of gestation attending antenatal care in Paarl, a periurban setting outside of Cape Town, South Africa. Participants were recruited from two clinics (TC Newman and Mbekweni). Infants were given Bacillus Calmette-Guérin vaccination at birth as per national policy. Nasopharyngeal swabs for cytomegalovirus detection using qPCR were done for infants at birth, age 3 and 6 weeks, and age 3, 6, 12, and 24 months. Children were prospectively followed up for tuberculosis disease until age 9 years using tuberculin skin testing, radiographic examinations, GeneXpert, and sputum testing. Tuberculin skin tests were done at the 6-month visit and then at age 12, 24, 36, 48, and 60 months, and at the time of lower respiratory tract infection. We compared tuberculosis disease incidence after age 1 year or after age 6 months in children with and without cytomegalovirus infection using Cox regression and hazard ratios (HRs) with 95% CIs. FINDINGS: Between March 5, 2012, and March 31, 2015, 1225 pregnant women were recruited and enrolled in the birth cohort. 88 (7%) women were excluded because of loss to antenatal follow-up or pregnancy losses. Of 1143 livebirths, 68 (6%) mother-infant pairs were excluded. In total, 963 children were serially tested for cytomegalovirus (7186 cytomegalovirus measurements taken; median six tests per child, IQR 2-11). The prevalence of congenital cytomegalovirus at age younger than 3 weeks was 2% (18 of 816). Cytomegalovirus positivity increased continuously with age from 3% (27 of 825) by age 6 weeks to 21% (183 of 882) by 3 months, 35% (315 of 909) by 6 months, and 42% (390 of 933) by 12 months. Mother-infant pairs were followed up for a median of 6·9 years (IQR 6·0-7·8). The risk of tuberculosis disease in children after age 1 year was higher in those with cytomegalovirus infection by age 6 weeks (adjusted HR 4·1, 95% CI 1·2-13·8; p=0·022), 3 months (2·8, 1·4-5·8; p=0·0040), 6 months (3·6, 1·7-7·3; p<0·0001), 12 months (3·2, 1·6-6·4; p=0·0010), and 24 months (4·2, 2·0-8·8; p<0·0001). The risk of microbiologically confirmed tuberculosis disease was also higher among children acquiring cytomegalovirus infection before age 3 months (adjusted HR 3·2, 95% CI 1·0-10·6; p=0·048), 6 months (3·9, 1·2-13·0; p=0·027), 12 months (4·4, 1·2-16·3; p=0·027), and 24 months (6·1, 1·3-27·9; p=0·020). In children older than 1 year, the risk of tuberculosis disease was consistently greater in those with high cytomegalovirus loads than in those with low cytomegalovirus loads that were acquired before age 3 months (adjusted HR 2·0 vs 3·7; ptrend=0·0020; both groups compared with cytomegalovirus negative reference) and before age 12 months (2·7 vs 3·7; ptrend=0·0009). INTERPRETATION: Infants that acquire cytomegalovirus in the first year of life are at high risk of subsequently developing tuberculosis disease. Efforts to prevent tuberculosis in early childhood in high-burden countries might need to deter or delay acquisition of cytomegalovirus perinatally or in the first months of life. FUNDING: Bill & Melinda Gates Foundation, MRC South Africa, National Research Foundation South Africa, and Wellcome Trust

    Natural and hybrid immunity following four COVID-19 waves: A prospective cohort study of mothers in South Africa

    Get PDF
    BACKGROUND: More than half the global population has been exposed to SARS-CoV-2. Naturally induced immunity influences the outcome of subsequent exposure to variants and vaccine responses. We measured anti-spike IgG responses to explore the basis for this enhanced immunity. METHODS: A prospective cohort study of mothers in a South African community through ancestral/beta/delta/omicron SARS-CoV-2 waves (March 2020-February 2022). Health seeking behaviour/illness were recorded and post-wave serum samples probed for IgG to Spike (CoV2-S-IgG) by ECLISA. To estimate protective CoV2-S-IgG threshold levels, logistic functions were fit to describe the correlation of CoV2-S-IgG measured before a wave and the probability for seroconversion/boosting thereafter for unvaccinated and vaccinated adults. FINDINGS: Despite little disease, 176/339 (51·9%) participants were seropositive following wave 1, rising to 74%, 89·8% and 97·3% after waves 2, 3 and 4 respectively. CoV2-S-IgG induced by natural exposure protected against subsequent SARS-CoV-2 infection with the greatest protection for beta and least for omicron. Vaccination induced higher CoV2-S-IgG in seropositive compared to naïve vaccinees. Amongst seropositive participants, proportions above the 50% protection against infection threshold were 69% (95% CrI: 62, 72) following 1 vaccine dose, 63% (95% CrI: 63, 75) following 2 doses and only 11% (95% CrI: 7, 14) in unvaccinated during the omicron wave. INTERPRETATION: Naturally induced CoV2-S-IgG do not achieve high enough levels to prevent omicron infection in most exposed individuals but are substantially boosted by vaccination leading to significant protection. A single vaccination in those with prior immunity is more immunogenic than 2 doses in a naïve vaccinee and may provide adequate protection. FUNDING: UK NIH GECO award (GEC111), Wellcome Trust Centre for Infectious Disease Research in Africa (CIDRI), Bill & Melinda Gates Foundation, USA (OPP1017641, OPP1017579) and NIH H3 Africa (U54HG009824, U01AI110466]. HZ is supported by the SA-MRC. MPN is supported by an Australian National Health and Medical Research Council Investigator Grant (APP1174455). BJQ is supported by a grant from the Bill and Melinda Gates Foundation (OPP1139859). Stefan Flasche is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant number 208812/Z/17/Z)

    Making data map-worthy—enhancing routine malaria data to support surveillance and mapping of <i>Plasmodium falciparum</i> anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study

    Get PDF
    Background: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.</br

    Breath can discriminate tuberculosis from other lower respiratory illness in children.

    Full text link
    peer reviewedPediatric tuberculosis (TB) remains a global health crisis. Despite progress, pediatric patients remain difficult to diagnose, with approximately half of all childhood TB patients lacking bacterial confirmation. In this pilot study (n = 31), we identify a 4-compound breathprint and subsequent machine learning model that accurately classifies children with confirmed TB (n = 10) from children with another lower respiratory tract infection (LRTI) (n = 10) with a sensitivity of 80% and specificity of 100% observed across cross validation folds. Importantly, we demonstrate that the breathprint identified an additional nine of eleven patients who had unconfirmed clinical TB and whose symptoms improved while treated for TB. While more work is necessary to validate the utility of using patient breath to diagnose pediatric TB, it shows promise as a triage instrument or paired as part of an aggregate diagnostic scheme

    Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.

    Get PDF
    BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015)
    • …
    corecore