546 research outputs found

    Pilot Programs in Off-Farm Agricultural Occupations

    Get PDF
    A questionnaire was designed to determine: (1) the number of departments placing students in off-farm agricultural cooperative occupational experience programs including the number of students involved, type of occupational placement, how they were enrolled in the related classroom instruction; (2) the school and community resources including the instructor\u27s time, adequacy of the vocational agriculture room, and identified or estimated number of training stations; (3) vocational agriculture instructors\u27 attitude toward off-farm programs including the instructor\u27 s opinion of the sufficiency of numbers for the program, their contacts with local agri-businessmen concerning training stations, their explanation of program to superintendent, principal, board, and businessmen, their use of local advisory groups, and their plans to start work in the off-farm agricultural occupations area; (4) teacher\u27 s evaluation of expressed student interest in off-farm agriculture occupations; (5) the reaction of administrators and local school boards to teacher explanations of off-farm supervised occupational experience programs, and (6) questions asked by or of the instructors

    STEREO and ACE Observations of Energetic Particles from Corotating Interaction Regions

    Get PDF
    Since early 2007, significant particle enhancements due to corotating interaction regions (CIRs) have regularly appeared at 1 AU without any appreciable contamination from solar energetic particles (SEPs). In 2009 the prevalence of CIRs diminished as the maximum speed of the high speed solar wind streams in the ecliptic decreased along with the tilt of the heliospheric current sheet. Observations of CIR time profiles at different longitudes from STEREO show delays between the Behind and Ahead spacecraft that are often roughly as expected from the corotation time lag, although small differences in the spacecraft latitudes introduce significant scatter in the time delays. In some cases different features seen at Ahead and Behind suggest that transient disturbances in the solar wind may alter connection to or transport from the shock, or that temporal changes occur in the CIR shock itself. H and He data from STEREO/LET at 1.8–6 MeV/nucleon show that 1) the CIR spectral index at these energies is ~−4, independent of intensity but with considerable variability, 2) the He/H ratio is ~0.03 for larger CIRs but varies systematically with energy and event intensity, and 3) although the correlation between the CIR MeV particle increases and solar wind speed is generally good, many times a high-speed stream is not associated with MeV particles, while at other times a recurring series of CIR particle increases appears only at higher energies and may be associated with current sheet crossings and low speed solar wind

    Cosmic-Ray Spectra in Interstellar Space

    Get PDF
    At energies below ~300 MeV/nuc our knowledge of cosmic-ray spectra outside the heliosphere is obscured by the energy loss that cosmic rays experience during transport through the heliosphere into the inner solar system. This paper compares measurements of secondary electron-capture isotope abundances and cosmic-ray spectra from ACE with a simple model of interstellar propagation and solar modulation in order to place limits on the range of interstellar spectra that are compatible with both sets of data

    STEREO Observations of Energetic Neutral Hydrogen Atoms During the 2006 December 5 Solar Flare

    Get PDF
    We report the discovery of energetic neutral hydrogen atoms (ENAs) emitted during the X9 solar event of 2006 December 5. Beginning ~1 hr following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6-15 MeV protons beginning hours before the onset of the main solar energetic particle event at Earth. More than 70% of these particles arrived from a longitude within ±10° of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events < 5 MeV were due to ENAs. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially stripped coronal ions are an important source of ENAs in solar events

    The Phosphorus, Sulfur, Argon, and Calcium Isotopic Composition of the Galactic Cosmic Ray Source

    Get PDF
    Galactic cosmic ray (GCR) measurements of the phosphorus, sulfur, argon, and calcium isotopes made by the Cosmic Ray Isotope Spectrometer aboard the Advanced Composition Explorer are reported over the energy range from ~100 to ~400 MeV nucleon^(–1). The propagation of cosmic rays through the Galaxy and heliosphere is modeled with constraints imposed by measurements. Isotopic source abundance ratios ^(31)P/^(32)S, ^(34)S/^(32)S, ^(38)Ar/^(36)Ar, and ^(44)Ca/^(40)Ca are deduced. The derived ^(31)P/^(32)S ratio is 2.34 ± 0.34 times larger than the solar system value, lending further credence to the suggestion that refractory elements are enriched in the GCRs due to the sputtering of ions off grains in the cores of superbubbles. By determining the GCR source abundances of argon (a noble gas) and calcium (a refractory), it is determined that material in grains is accelerated to GCR energies a factor of 6.4 ± 0.3 more efficiently than gas-phase material in this charge range. With this information, the dust fraction of phosphorus and sulfur in the interstellar material that is mixed with stellar ejecta to form the GCR seed material is found to be consistent with astronomical observations

    GCR Neon Isotopic Abundances: Comparison with Wolf-Rayet Star Models and Meteoritic Abundances

    Get PDF
    Measurements of the neon isotopic abundances from the ACE-CRIS experiment are presented. These abundances have been obtained in seven energy intervals over the energy range of ~80≤E≤280 MeV/nucleon. The ^(22)Ne/^(20)Ne source ratio is derived using the measured ^(21)Ne/^(20)Ne abundance as a "tracer" of secondary production of the neon isotopes. We find that the ^(22)Ne/^(20)Ne abundance ratio at the cosmic-ray source is a factor of 5.0±0.2 greater than in the solar wind. The GCR ^(22)Ne/^(20)Ne ratio is also shown to be considerably larger than that found in anomalous cosmic rays, solar energetic particles, most meteoritic samples of matter, and interplanetary dust particles. Recent two-component Wolf-Rayet models provide predictions for the ^(22)Ne/^(20)Ne ratio and other isotope ratios. Comparison of the CRIS neon, iron, and nickel isotopic source abundance ratios with predictions indicate possible enhanced abundances of some neutron-rich nuclides that are expected to accompany the ^(22)Ne excess

    High Energy Ionic Charge State Composition In Recent Large Solar Energetic Particle Events

    Get PDF
    The ionic charge states of solar energetic particles (SEPs) provide information on the temperature of source materials and on conditions during acceleration and transport. SAMPEX/MAST measures mean ionic charge states at > 15 MeV/nuc using the geomagnetic rigidity filter technique. Charge state measurements by MAST for gradual SEP events suggest a continuum of charge states correlated with abundance ratios for a variety of elements, similar to what is observed at lower energies. In cases where lower energy measurements are also available, the combined measurements indicate energy dependent charge states. We have completed ionic charge state measurements for 17 SEP events from solar cycle 23. We discuss the implications of our results

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Λ_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Λ_(esc). The decrease in Λ_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Λ_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Λ_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Λ_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Λ_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    The Phosphorus/Sulfur Abundance Ratio as a Test of Galactic Cosmic-Ray Source Models

    Get PDF
    Galactic cosmic-ray (GCR) elemental abundances display a fractionation compared to solar-system values that appears ordered by atomic properties such as the first ionization potential (FIP) or condensation temperature (volatility). Determining which parameter controls the observed fractionation is crucial to distinguish between GCR origin models. The Cosmic-Ray Isotope Spectrometer (CRIS) instrument on board NASA's Advanced Composition Explorer (ACE) spacecraft can measure the abundances of several elements that break the general correlation between FIP and volatility (e.g., Na, P, K, Cu, Zn, Ga, and Ge). Phosphorus is a particularly interesting case as it is a refractory (high condensation temperature) element with a FIP value nearly identical to that of its semi-volatile neighbor, sulfur. Using a leaky-box galactic propagation model we find that the P/S and Na/Mg ratios in the GCR source favor volatility as the controlling parameter

    Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Get PDF
    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV γ-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances ≥ 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations
    corecore