703 research outputs found

    Scaling and the prediction of energy spectra in decaying hydrodynamic turbulence

    Full text link
    Few rigorous results are derived for fully developed turbulence. By applying the scaling properties of the Navier-Stokes equation we have derived a relation for the energy spectrum valid for unforced or decaying isotropic turbulence. We find the existence of a scaling function ψ\psi. The energy spectrum can at any time by a suitable rescaling be mapped onto this function. This indicates that the initial (primordial) energy spectrum is in principle retained in the energy spectrum observed at any later time, and the principle of permanence of large eddies is derived. The result can be seen as a restoration of the determinism of the Navier-Stokes equation in the mean. We compare our results with a windtunnel experiment and find good agreement.Comment: 4 pages, 1 figur

    Spectral imbalance and the normalized dissipation rate of turbulence

    Full text link
    The normalized turbulent dissipation rate CϔC_\epsilon is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of CϔC_\epsilon is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of CϔC_\epsilon becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of CϔC_\epsilon at low Reynolds number that is observed in the simulations

    Helicity cascades in rotating turbulence

    Get PDF
    The effect of helicity (velocity-vorticity correlations) is studied in direct numerical simulations of rotating turbulence down to Rossby numbers of 0.02. The results suggest that the presence of net helicity plays an important role in the dynamics of the flow. In particular, at small Rossby number, the energy cascades to large scales, as expected, but helicity then can dominate the cascade to small scales. A phenomenological interpretation in terms of a direct cascade of helicity slowed down by wave-eddy interactions leads to the prediction of new inertial indices for the small-scale energy and helicity spectra.Comment: 7 pages, 8 figure

    The imprint of large-scale flows on turbulence

    Full text link
    We investigate the locality of interactions in hydrodynamic turbulence using data from a direct numerical simulation on a grid of 1024^3 points; the flow is forced with the Taylor-Green vortex. An inertial range for the energy is obtained in which the flux is constant and the spectrum follows an approximate Kolmogorov law. Nonlinear triadic interactions are dominated by their non-local components, involving widely separated scales. The resulting nonlinear transfer itself is local at each scale but the step in the energy cascade is independent of that scale and directly related to the integral scale of the flow. Interactions with large scales represent 20% of the total energy flux. Possible explanations for the deviation from self-similar models, the link between these findings and intermittency, and their consequences for modeling of turbulent flows are briefly discussed

    Non-local interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws

    Get PDF
    We analyze the data stemming from a forced incompressible hydrodynamic simulation on a grid of 2048^3 regularly spaced points, with a Taylor Reynolds number of Re~1300. The forcing is given by the Taylor-Green flow, which shares similarities with the flow in several laboratory experiments, and the computation is run for ten turnover times in the turbulent steady state. At this Reynolds number the anisotropic large scale flow pattern, the inertial range, the bottleneck, and the dissipative range are clearly visible, thus providing a good test case for the study of turbulence as it appears in nature. Triadic interactions, the locality of energy fluxes, and structure functions of the velocity increments are computed. A comparison with runs at lower Reynolds numbers is performed, and shows the emergence of scaling laws for the relative amplitude of local and non-local interactions in spectral space. The scalings of the Kolmogorov constant, and of skewness and flatness of velocity increments, performed as well and are consistent with previous experimental results. Furthermore, the accumulation of energy in the small-scales associated with the bottleneck seems to occur on a span of wavenumbers that is independent of the Reynolds number, possibly ruling out an inertial range explanation for it. Finally, intermittency exponents seem to depart from standard models at high Re, leaving the interpretation of intermittency an open problem.Comment: 8 pages, 8 figure

    Anisotropy and non-universality in scaling laws of the large scale energy spectrum in rotating turbulence

    Get PDF
    Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale LfL_f, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the \textit{inverse cascade} range at a small but fixed Rossby number, {Rof≈0.05\mathcal{R}o_f \approx 0.05}. Several {numerical simulations with} helical and non-helical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with {reasonably} large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a {∌k⊄−5/3\sim k_{\perp}^{-5/3}} scaling, and the other that corresponds to a steeper {∌k⊄−3\sim k_{\perp}^{-3}} spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to 2D modes. {The spectrum that} emerges {depends on} the anisotropy of the forcing function{,} the former solution prevailing for forcings in which more energy is injected into 2D modes while the latter prevails for isotropic forcing. {In the case of anisotropic forcing, whence the energy} goes from the 2D to the 3D modes at low wavenumbers, large-scale shear is created resulting in another time scale τsh\tau_{sh}, associated with shear, {thereby producing} a ∌k−1\sim k^{-1} spectrum for the {total energy} with the 2D modes still following a {∌k⊄−5/3\sim k_{\perp}^{-5/3}} scaling

    Lagrangian filtered density function for LES-based stochastic modelling of turbulent dispersed flows

    Full text link
    The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study turbulent dispersed flows when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGS) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves for a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided by LES and then used to advance the SDEs in time. The model consistency is assessed in the limit of particles with zero inertia, when "duplicate fields" are available from both the Eulerian LES and the Lagrangian tracking. Tests with inertial particles were performed to examine the capability of the model to capture particle preferential concentration and near-wall segregation. Upon comparison with DNS-based statistics, our results show improved accuracy and considerably reduced errors with respect to the case in which no SGS model is used in the equations of particle motion

    Coriolis force in Geophysics: an elementary introduction and examples

    Get PDF
    We show how Geophysics may illustrate and thus improve classical Mechanics lectures concerning the study of Coriolis force effects. We are then interested in atmospheric as well as oceanic phenomena we are familiar with, and are for that reason of pedagogical and practical interest. Our aim is to model them in a very simple way to bring out the physical phenomena that are involved.Comment: Accepted for publication in European Journal of Physic
    • 

    corecore