365 research outputs found
Π£ΡΠΏΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΈ Π±Π΅Π΄ΡΠ΅Π½Π½ΡΡ ΡΠΎΡΡΠ΄ΠΎΠ²: ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ
Background. Injury to the main vessels is often accompanied by life-threatening bleeding, permanent disability or death. In the modern literature, only isolated cases of reconstructive surgery for major vein injury are described, their long-term results are insufficiently studied, there is little information about the introduction of telemedicine technologies into the practice of emergency angiosurgical care.
The aim of the study is to demonstrate the immediate and long-term results of the joint work of trauma surgeons and angiosurgeons in helping a patient with injury to the main femoral vessels.
Case presentation. The results of treatment of the patient with the diagnosis: laceration of the upper third of the right thigh with rupture of the common femoral vein and superficial femoral artery and the development of threatening ischemia of the right lower limb; severe blood loss; hemorrhagic shock IV; severity of injury: VPH SP 33; MESS 7. Treatment of the patient took place in several stages. At the first of them, hemostasis was performed, the hemorrhagic shock was resolved. Further, the patient was consulted by an angiosurgeon through telecommunication technologies, after which it was decided to include an angiosurgeon in the surgical team. The prosthetics of femoral vessels was performed: the main venous and arterial blood flow was restored in the affected limb. The patient was discharged in a satisfactory condition with no signs of thrombosis.
Conclusions. Compliance with consistent actions in helping a patient with a vascular injury prevents the development of a deadly triad and a fatal outcome. The use of telemedicine consultations provides the angiosurgeon with the opportunity to remotely assess the clinical picture, the severity of the injury, discuss the sequence and volume of necessary medical care at the place of primary hospitalization. Performing reconstructive surgeries using various types of grafts allows you to restore the main blood flow through damaged vessels with good immediate and long-term results.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. ΠΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ΄ΠΎΠ² Π½Π΅ΡΠ΅Π΄ΠΊΠΎ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΆΠΈΠ·Π½Π΅ΡΠ³ΡΠΎΠΆΠ°ΡΡΠΈΠΌ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΡΠΎΠΉΠΊΠΎΠΉ ΡΡΡΠ°ΡΠΎΠΉ ΡΡΡΠ΄ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΈΠ»ΠΈ Π»Π΅ΡΠ°Π»ΡΠ½ΡΠΌ ΠΈΡΡ
ΠΎΠ΄ΠΎΠΌ. Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Ρ Π»ΠΈΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ
Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ² ΠΏΡΠΈ ΡΡΠ°Π²ΠΌΠ΅ ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΡΡ
Π²Π΅Π½, Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΈΡ
ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΌΠ°Π»ΠΎ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π΅ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π² ΠΏΡΠ°ΠΊΡΠΈΠΊΡ Π½Π΅ΠΎΡΠ»ΠΎΠΆΠ½ΠΎΠΉ Π°Π½Π³ΠΈΠΎΡ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»ΡΡΠ°Ρ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠΊΠ°Π·Π°Π½ΠΈΡ Π°Π½Π³ΠΈΠΎΡ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠΎΡΡΡΠ°Π΄Π°Π²ΡΠ΅ΠΌΡ Ρ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ: ΡΠ²Π°Π½Π°Ρ ΡΠ°Π½Π° Π²Π΅ΡΡ
Π½Π΅ΠΉ ΡΡΠ΅ΡΠΈ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π±Π΅Π΄ΡΠ° Ρ ΡΠ°Π·ΡΡΠ²ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΉ Π±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π½Ρ ΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ Π±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ, ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ³ΡΠΎΠΆΠ°ΡΡΠ΅ΠΉ ΠΈΡΠ΅ΠΌΠΈΠΈ ΠΏΡΠ°Π²ΠΎΠΉ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ; ΠΊΡΠΎΠ²ΠΎΠΏΠΎΡΠ΅ΡΡ ΡΡΠΆΠ΅Π»ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ; Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠΊ IV ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. Π’ΡΠΆΠ΅ΡΡΡ ΡΡΠ°Π²ΠΌΡ: ΠΠΠ₯ Π‘Π 33; MESS 7. ΠΠΊΠ°Π·Π°Π½ΠΈΠ΅ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠΎΡΡΡΠ°Π΄Π°Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΡ
ΠΎΠ΄ΠΈΠ»ΠΎ Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠ°ΠΏΠΎΠ². ΠΠ° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΠ°ΡΠΈΠ΅Π½Ρ Π²ΡΠ²Π΅Π΄Π΅Π½ ΠΈΠ· Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ°. ΠΠ°ΡΠ΅ΠΌ Π±ΡΠ»Π° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠ΅Π»Π΅ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠ°Ρ ΠΊΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΡ, ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ Π±ΡΠ»ΠΎ ΠΏΡΠΈΠ½ΡΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ Π² Π±ΡΠΈΠ³Π°Π΄Ρ Π°Π½Π³ΠΈΠΎΡ
ΠΈΡΡΡΠ³Π°. ΠΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½Π°Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π΄ΡΠ΅Π½Π½ΡΡ
ΡΠΎΡΡΠ΄ΠΎΠ². Π ΠΏΠΎΡΡΡΠ°Π΄Π°Π²ΡΠ΅ΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π²Π΅Π½ΠΎΠ·Π½ΡΠΉ ΠΈ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊ. ΠΠ°ΡΠΈΠ΅Π½Ρ Π² ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π±ΡΠ» Π²ΡΠΏΠΈΡΠ°Π½ Π±Π΅Π· ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΡΡΠΎΠΌΠ±ΠΎΠ·Π°.
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π‘ΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ
Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΏΡΠΈ ΠΎΠΊΠ°Π·Π°Π½ΠΈΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ ΡΡΠ°Π²ΠΌΠΎΠΉ ΡΠΎΡΡΠ΄ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠΌΠ΅ΡΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠΈΠ°Π΄Ρ ΠΈ ΡΠ°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡ
ΠΎΠ΄Π°. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π»Π΅ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΡΠ»ΡΡΠ°ΡΠΈΠΉ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π°Π½Π³ΠΈΠΎΡ
ΠΈΡΡΡΠ³Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ, ΡΡΠΆΠ΅ΡΡΡ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ, ΠΎΠ±ΡΡΠ΄ΠΈΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈ ΠΎΠ±ΡΠ΅ΠΌ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠΎ ΠΌΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ Π³ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊ ΠΏΠΎ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΡΠΌ ΡΠΎΡΡΠ΄Π°ΠΌ Ρ Ρ
ΠΎΡΠΎΡΠΈΠΌΠΈ Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌ ΠΈ ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ
Microwave wood chip treatment use in chemical pulp manufacturing (technical-economic assesment)
[EN] Low permeability of many wood species causes problems in the chemical pulp industry.
These include: very long cooking times, high chemical consumption, large material losses,
high energy consumption, and environment pollution. New microwave (MW) wood
modification technology can provide an increase in wood permeability for liquids and gases
that solves many of these problems. MW wood pre-treatment can increase pulp mill
throughput, reduce chemical and power consumption, increase pulp quality and yield,
and improve the environmental performance. Economic modelling of this new technology
use in different chemical pulp mill conditions allowed to asses the effect of capital costs,
electricity costs, labour costs and other cost components to specific total costs of MW chip
processing. MW chip treatment costs for pulp mills with output 50,000 to 500,000 ait dry
ton (ADT) per year at electricity cost range US0.24/kWh vary in the range from
US60.8 per air dry ton of pulp. Electricity costs form the most significant part
β 51- 69% of the total specific costs of MW chip processing at electricity costs US0.12/kWh. New technology application in different Russian conditions can provide
benefits up to 7 β 22 Mil US$ per year for pulp mills with output more than 200,000
ADT/year. Ecological effect and high economic advantages of this MW technology provide
good opportunity for commercialisation.Leshchinskaya, A. (2019). Microwave wood chip treatment use in chemical pulp manufacturing (technical-economic assesment). En AMPERE 2019. 17th International Conference on Microwave and High Frequency Heating. Editorial Universitat Politècnica de València. 137-143. https://doi.org/10.4995/AMPERE2019.2019.9706OCS13714
Addition to the aphid fauna of Belorussia (Homoptera: Aphidoidea) with detailed description of sexuales of Semiaphis anthrisci (Kaltenbach, 1843)
For the fi rst time, Therioaphis luteola (BΓΆrner, 1949), Aphis chloris Koch, 1854, Aphis craccae
Linnaeus, 1758, Aphis galiiscabri Schrank, 1801, Aphis newtoni Theobald, 1927, Aphis
thalictri Koch, 1854, Aphis (Bursaphis) epilobiaria Theobald, 1927, Brachycaudus (Appelia)
tragopoginis (Kaltenbach, 1843), Brachycaudus (Brachycaudina) aconiti (Mordvilko, 1928),
Dysaphis hirsutissima (BΓΆrner, 1940), Acaudinum centaureae (Koch, 1854), Hydaphias
molluginis BΓΆrner, 1939, Semiaphis anthrisci (Kaltenbach, 1843), Uroleucon (Lambersius)
erigeronense (Thomas, 1878) and Uroleucon (Uromelan) campanulae (Kaltenbach, 1843)
are recorded from Byelorussia. The detailed description of oviparous female and male of
S. anthrisci are given
ΠΠΎΠ΄Π΅Π»Ρ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ ΠΎΡΡΠ°ΡΠ»ΡΡ : ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ
The article presents the key provisions of the developed model of financial incentives for innovation activity for companies in the industrial sector. The subject of the study is economic relations formed in the process of financial incentives for innovation activity of industrial companies. The aim of the study is to present the authorsβ model of financial incentives for innovation activity in the industrial sector, as well as to evaluate its effectiveness using forecasting methods. The relevance of the study is due to the existence in modern conditions of significant obstacles to financial incentives for innovation in the industrial sector: the lack of equity capital of companies, sufficiently high costs for the implementation of innovation projects, the existence of financial risk of loss of solvency by the company, as well as a lack of budget financing of innovation and state material support. The novelty of the research consists in the development of a model of financial incentives for innovation, which could be used in practice by companies operating in the industrial sector in order to increase production potential through the implementation of innovation and R&D projects. The authors apply the following methods: statistical analysis, correlation and regression analysis, forecasting, scenario analysis and construction of the trend of the GDP of the Russian Federation. Results: the authors define the structure of the modern model of financial incentives for innovation activity for industrial companies, evaluate its effectiveness using the interdependencies between the GDP of the Russian Federation and key parameters reflecting the increase in innovation activities of Russian entrepreneurship. Statistical data for forecasting the GDP of the Russian Federation were collected for the period 2010β2021. The authors conclude that the most effective scenario for the Russian innovation economy is the practical use of the developed model of financial incentives for innovation activity in highly active and mediumactive companies.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ, ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡΠΈΡ
Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
. ΠΡΠ΅Π΄ΠΌΠ΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΠ΅ΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΡΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ΅Π½ΠΊΠ° Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π·Π½Π°ΡΠΈΠΌΡΡ
ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΠΉ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
: Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΎΠΌ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°ΠΏΠΈΡΠ°Π»Π° Ρ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΡΠΎΠΊΠΈΠΌΠΈ ΠΈΠ·Π΄Π΅ΡΠΆΠΊΠ°ΠΌΠΈ Π½Π° ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ², ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° ΠΏΠΎΡΠ΅ΡΠΈ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠ΅ΠΉ ΠΏΠ»Π°ΡΠ΅ΠΆΠ΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅Ρ
Π²Π°ΡΠΊΠΎΠΉ Π±ΡΠ΄ΠΆΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΉ ΠΈ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ. ΠΠΎΠ²ΠΈΠ·Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ, ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΡΡΡΠΈΠ΅ Π² ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
, Ρ ΡΠ΅Π»ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° Π·Π° ΡΡΠ΅Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ² ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΉ ΠΈ ΠΠΠΠΠ . ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ: ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠ΅Π½Π°ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΡΠ΅Π½Π΄Π° ΠΠΠ Π Π€. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π°Π²ΡΠΎΡΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΡΡΡΡΠΊΡΡΡΠ° ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ, ΠΎΡΠ΅Π½Π΅Π½Π° Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΠΠ Π Π€ ΠΈ ΠΊΠ»ΡΡΠ΅Π²ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, ΠΎΡΡΠ°ΠΆΠ°ΡΡΠΈΠΌΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΠ΅Π»ΡΡΡΠ²Π°. Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠΠ Π Π€ Π±ΡΠ»ΠΈ ΡΠΎΠ±ΡΠ°Π½Ρ Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ 2010β2021 Π³Π³. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΡΠ΅Π½Π°ΡΠΈΠ΅ΠΌ Π΄Π»Ρ ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ Π²ΡΡΡΡΠΏΠ°Π΅Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² Π²ΡΡΠΎΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΈ ΡΡΠ΅Π΄Π½Π΅Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΡΡ
Localization of alkaline phosphatase in bacillus intermedium Cells
Alkaline phosphatase, an enzyme secreted by Bacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth of B. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2UPO4 at a concentration of 0.01% diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular, forms of phosphatase varied depending on its cellular localization and growth phase
Effect of pH of medium on the dielectric properties and activity of deoxyribonucleases of Bacillus amylozyma and Serratia marcescens
It has been shown that increase in the activity of deoxyribonucleases of Bac. amylozyma, strain 9 A and Serr. marcescens strain 41 over the pH range 8Β·0-9Β·0 correlates with increase in the flexibility of the macromolecules of the enzymes. Change in the conformation of the protein macromolecules of the enzymes probably ensures the steric correspondence of the active centres of the enzymes with the molecules of the substrate, which leads to rise in their activity. Β© 1970
Actinomycin D Influence on Biosynthesis of Extracellular Ribonucleases by Sporulating Bacteria
The influence of actinomycin D on the synthesis of extracellular ribonucleases by "Bacillus intermedius" (binase), B.pumilus (RNAse Bp) and B.amyloliquefaciens (barnase) was studied comparatively. When added during the active synthesis of the enzymes actinomycin D stimulated the biosynthesis of binase and RNAse Bp and had no influence on the barnase biosynthesis. The response of the bacillary RNAse biosynthesis to the added actinomycin D correlated with the differences in the nucleotide sequences of the genes encoding the enzymes. The Escherichia coli SURE recombinant strains carrying the plasmids with the genes of binase, RNAse Bp and barnase under different regulatory sequences, as well as the E.coli MC4100 recombinant strains carrying the plasmids with the Ξ²-galactosidase gene under the promoters of the bacillary RNAse were isolated. However, the expression of the bacillary ribonuclease genes in the E.coli recombinant strains carrying the plasmids with the genes of the enzymes, as well as the expression of the Ξ²-galactosidase gene from the promotors of the bacillary RNAses was not stimulated by actinomycin D irrespective of the dose and addition time
Production of high-molecular-weight ribonuclease Bsn from the recombinant strain of Bacillus subtilis
Background: Ribonucleases (RNases) can be used in both basic and clinical sciences, e.g. in research on developmental processes or on antiviral and antitumor therapy. RNases have great potential as therapeutic entities. On the basis of new ribonucleases new medications can be created. Bacilli synthesize two types of secretory ribonucleases, the well-studied low-molecular-weight ribonucleases and high-molecular-weight ribonucleases. Only two RNases of the second type have so far been described: RNase Bsn from B. subtilis and binase II from B. intermedius. Materials/Methods: The activity of ribonucleases was determined from the amount of the acid-soluble products of RNA hydrolysis. The cultivation media were optimized for maximum RNase production in terms of the experimental factorial design B2 using BIOPT software. Results: Our investigation of a novel secretory ribonuclease, the Bacillus subtilis RNase Bsn expressed in the recombinant B. subtilis strain 168, showed that it is synthesized in the growth retardation phase, when inorganic phosphate is exhausted in the medium. The biosynthesis of Bsn was found to be suppressed by inorganic phosphate in the medium and activated by small amounts of the transcriptional inhibitor actinomycin D. Conclusion: Our results show that the biosynthesis of the novel secretory ribonuclease Bsn in recombinant strain Bacillus subtilis 168 is subject to negative regulation by inorganic phosphate, and is activated by small doses of actinomycin D. The stimulating effect of this antibiotic is well pronounced during the active synthesis of ribonucleases, but insignificant when ribonuclease synthesis is inhibited by Pi
βGenderβ in the UN Sustainable Development Goals
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ²ΡΡΠ΅Π½ΠΎ Π°Π½Π°Π»ΠΈΠ·Ρ ΡΠ°ΠΊΠΈΡ
ΠΏΠΎΠ½ΡΡΠΈΠΉ, ΠΊΠ°ΠΊ Β«Π³Π΅Π½Π΄Π΅ΡΒ» ΠΈΒ Β«Π³Π΅Π½Π΄Π΅ΡΠ½Π°Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ°Β», ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΒ ΡΠΎΠ»ΠΈ Π²Β ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΌ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π΅. Π£Π΄Π΅Π»ΡΠ΅ΡΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ·Π³Π»Π°ΡΠ°Π΅ΠΌΠΎΠΌΡ ΠΠΠ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΌΡΠΆΡΠΈΠ½ ΠΈΒ ΠΆΠ΅Π½ΡΠΈΠ½, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ
ΠΎΠ΄ΠΈΡ ΡΠ²ΠΎΠ΅ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²Β Π¦Π΅Π»ΡΡ
ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ.The study analyzes the concepts of Β«enderΒ» and Β«gender policyΒ», determines their significance and role in the modern international community. Attention is paid to the UN principle of equal rights for men and women, part of the Sustainable Development Goals
Investigation of the effect of bivalent metal ions and EDTA on the activity and dielectric properties of deoxyribonuclease of Bacillus amylozyma and Serratia marcescens
1. (1) Increase and reduction in the activity of deoxyribonucleases of B. amylozyma and Serratia marcescens under the influence of the ions Mg++, Mn++ Ca++ and EDTA correlate with the increase and reduction in the asymmetry of the macromolecules of the enzymes. 2. (2) The activity of the deoxyribonucleases studied was influenced by the configuration of the molecules in solution. Β© 1968
- β¦