2,724 research outputs found
On Non-Abelian Symplectic Cutting
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact
groups. By using a degeneration based on the Vinberg monoid we give, in good
cases, a global quotient description of a surgery construction introduced by
Woodward and Meinrenken, and show it can be interpreted in algebro-geometric
terms. A key ingredient is the `universal cut' of the cotangent bundle of the
group itself, which is identified with a moduli space of framed bundles on
chains of projective lines recently introduced by the authors.Comment: Various edits made, to appear in Transformation Groups. 28 pages, 8
figure
The Lie-Poisson structure of the reduced n-body problem
The classical n-body problem in d-dimensional space is invariant under the
Galilean symmetry group. We reduce by this symmetry group using the method of
polynomial invariants. As a result we obtain a reduced system with a
Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The
reduction preserves the natural form of the Hamiltonian as a sum of kinetic
energy that depends on velocities only and a potential that depends on
positions only. Hence we proceed to construct a Poisson integrator for the
reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure
Calabi-Yau cones from contact reduction
We consider a generalization of Einstein-Sasaki manifolds, which we
characterize in terms both of spinors and differential forms, that in the real
analytic case corresponds to contact manifolds whose symplectic cone is
Calabi-Yau. We construct solvable examples in seven dimensions. Then, we
consider circle actions that preserve the structure, and determine conditions
for the contact reduction to carry an induced structure of the same type. We
apply this construction to obtain a new hypo-contact structure on S^2\times
T^3.Comment: 30 pages; v2: typos corrected, presentation improved, one reference
added. To appear in Ann. Glob. Analysis and Geometr
Separatrix splitting at a Hamiltonian bifurcation
We discuss the splitting of a separatrix in a generic unfolding of a
degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We
assume that the unperturbed fixed point has two purely imaginary eigenvalues
and a double zero one. It is well known that an one-parametric unfolding of the
corresponding Hamiltonian can be described by an integrable normal form. The
normal form has a normally elliptic invariant manifold of dimension two. On
this manifold, the truncated normal form has a separatrix loop. This loop
shrinks to a point when the unfolding parameter vanishes. Unlike the normal
form, in the original system the stable and unstable trajectories of the
equilibrium do not coincide in general. The splitting of this loop is
exponentially small compared to the small parameter. This phenomenon implies
non-existence of single-round homoclinic orbits and divergence of series in the
normal form theory. We derive an asymptotic expression for the separatrix
splitting. We also discuss relations with behaviour of analytic continuation of
the system in a complex neighbourhood of the equilibrium
Syzygies in equivariant cohomology for non-abelian Lie groups
We extend the work of Allday-Franz-Puppe on syzygies in equivariant
cohomology from tori to arbitrary compact connected Lie groups G. In
particular, we show that for a compact orientable G-manifold X the analogue of
the Chang-Skjelbred sequence is exact if and only if the equivariant cohomology
of X is reflexive, if and only if the equivariant Poincare pairing for X is
perfect. Along the way we establish that the equivariant cohomology modules
arising from the orbit filtration of X are Cohen-Macaulay. We allow singular
spaces and introduce a Cartan model for their equivariant cohomology. We also
develop a criterion for the finiteness of the number of infinitesimal orbit
types of a G-manifold.Comment: 28 pages; minor change
Singularities of bi-Hamiltonian systems
We study the relationship between singularities of bi-Hamiltonian systems and
algebraic properties of compatible Poisson brackets. As the main tool, we
introduce the notion of linearization of a Poisson pencil. From the algebraic
viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with
a fixed 2-cocycle. In terms of such linearizations, we give a criterion for
non-degeneracy of singular points of bi-Hamiltonian systems and describe their
types
Influence of the Dufour effect on convection in binary gas mixtures
Linear and nonlinear properties of convection in binary fluid layers heated
from below are investigated, in particular for gas parameters. A Galerkin
approximation for realistic boundary conditions that describes stationary and
oscillatory convection in the form of straight parallel rolls is used to
determine the influence of the Dufour effect on the bifurcation behaviour of
convective flow intensity, vertical heat current, and concentration mixing. The
Dufour--induced changes in the bifurcation topology and the existence regimes
of stationary and traveling wave convection are elucidated. To check the
validity of the Galerkin results we compare with finite--difference numerical
simulations of the full hydrodynamical field equations. Furthermore, we report
on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles
#Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds
Compounding of natural language units is a very common phenomena. In this
paper, we show, for the first time, that Twitter hashtags which, could be
considered as correlates of such linguistic units, undergo compounding. We
identify reasons for this compounding and propose a prediction model that can
identify with 77.07% accuracy if a pair of hashtags compounding in the near
future (i.e., 2 months after compounding) shall become popular. At longer times
T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This
technique has strong implications to trending hashtag recommendation since
newly formed hashtag compounds can be recommended early, even before the
compounding has taken place. Further, humans can predict compounds with an
overall accuracy of only 48.7% (treated as baseline). Notably, while humans can
discriminate the relatively easier cases, the automatic framework is successful
in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported
Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM
conference on Computer-Supported Cooperative Work and Social Computing (CSCW
2016
Renal pericytes: regulators of medullary blood flow
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla
- …
