Abstract

We extend the work of Allday-Franz-Puppe on syzygies in equivariant cohomology from tori to arbitrary compact connected Lie groups G. In particular, we show that for a compact orientable G-manifold X the analogue of the Chang-Skjelbred sequence is exact if and only if the equivariant cohomology of X is reflexive, if and only if the equivariant Poincare pairing for X is perfect. Along the way we establish that the equivariant cohomology modules arising from the orbit filtration of X are Cohen-Macaulay. We allow singular spaces and introduce a Cartan model for their equivariant cohomology. We also develop a criterion for the finiteness of the number of infinitesimal orbit types of a G-manifold.Comment: 28 pages; minor change

    Similar works

    Full text

    thumbnail-image

    Available Versions