395 research outputs found

    Spinach hexokinase I is located in the outer envelope membrane of plastids

    Get PDF
    AbstractThe subcellular localization of hexokinase activities in plant cells has been a matter of debate for a long time. We have isolated a hexokinase cDNA fragment from glucose-fed spinach leaves using a differential display reverse transcription-PCR approach. The corresponding cDNA was expressed in Escherichia coli and an antiserum, raised against the recombinant protein, was used in subcellular localization studies. The spinach hexokinase could be localized primarily to the outer envelope membrane of chloroplasts where it is inserted via its N-terminal membrane anchor. We suggest that the chloroplast envelope hexokinase is involved in the energization of glucose export from plastids rather than in the sugar-sensing pathway of the plant cell

    Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsin K is a cysteine peptidase known for its importance in osteoclast-mediated bone resorption. Inhibitors of cathepsin K are in clinical trials for treatment of osteoporosis. However, side effects of first generation inhibitors included altered levels of related cathepsins in peripheral organs and in the central nervous system (CNS). Cathepsin K has been recently detected in brain parenchyma and it has been linked to neurobehavioral disorders such as schizophrenia. Thus, the study of the functions that cathepsin K fulfils in the brain becomes highly relevant.</p> <p>Results</p> <p>Cathepsin K messenger RNA was detectable in all brain regions of wild type (WT) mice. At the protein level, cathepsin K was detected by immunofluorescence microscopy in vesicles of neuronal and non-neuronal cells throughout the mouse brain. The hippocampus of WT mice exhibited the highest levels of cathepsin K activity in fluorogenic assays, while the cortex, striatum, and cerebellum revealed significantly lower enzymatic activities. At the molecular level, the proteolytic network of cysteine cathepsins was disrupted in the brain of cathepsin K-deficient (<it>Ctsk</it><sup>-/-</sup>) animals. Specifically, cathepsin B and L protein and activity levels were altered, whereas cathepsin D remained largely unaffected. Cystatin C, an endogenous inhibitor of cysteine cathepsins, was elevated in the striatum and hippocampus, pointing to regional differences in the tissue response to <it>Ctsk </it>ablation. Decreased levels of astrocytic glial fibrillary acidic protein, fewer and less ramified profiles of astrocyte processes, differentially altered levels of oligodendrocytic cyclic nucleotide phosphodiesterase, as well as alterations in the patterning of neuronal cell layers were observed in the hippocampus of <it>Ctsk</it><sup>-/- </sup>mice. A number of molecular and cellular changes were detected in other brain regions, including the cortex, striatum/mesencephalon, and cerebellum. Moreover, an overall induction of the dopaminergic system was found in <it>Ctsk</it><sup>-/- </sup>animals which exhibited reduced anxiety levels as well as short- and long-term memory impairments in behavioral assessments.</p> <p>Conclusion</p> <p>We conclude that deletion of the <it>Ctsk </it>gene can lead to deregulation of related proteases, resulting in a wide range of molecular and cellular changes in the CNS with severe consequences for tissue homeostasis. We propose that cathepsin K activity has an important impact on the development and maintenance of the CNS in mice.</p

    Elongase Gene And Production Of Delta9-polyunsaturated Fatty Acids (Patent US 7601889 B2)

    Get PDF
    This invention relates to a new elongase gene having the sequence SEQ ID NO: 1 or its derivatives, to a gene construct comprising this sequence or its derivatives and to its use. The inventive nucleic acid sequence encodes a polypeptide which elongates alpha-linolenic acid (C18:3 d9, 12, 15) by at least two carbon atoms whereas gamma-linolenic acid (C18:3 d6, 9, 12) is not elongated. The invention additionally relates to vectors or organisms comprising an elongase gene having the sequence SEQ ID NO: 1 or its derivatives. The invention further relates to a process for the production of polyunsaturated fatty acids (=PUFAs) with an organism which comprises the elongase gene and which organism produces high amounts of oils and especially oils with a high content of unsaturated fatty acids. Additionally the invention relates to an oil and/or fatty acid composition with a higher content of polyunsaturated C20 or C22 fatty acids with at least two double bonds and/or to a triacylglycerol composition with a higher content of said polyunsaturated fatty acids

    Elongase Gene And Production Of Delta9-polyunsaturated Fatty Acids (Patent US 2005/0089981 A1)

    Get PDF
    This invention relates to a new elongase gene having the sequence SEQ ID NO: 1 or its derivatives, to a gene construct comprising this sequence or its derivatives and to its use. The inventive nucleic acid sequence encodes a polypeptide which elongates alpha-linolenic acid (C18:3 d9, 12, 15) by at least two carbon atoms whereas gamma-linolenic acid (C18:3 d6, 9, 12) is not elongated. The invention additionally relates to vectors or organisms comprising an elongase gene having the sequence SEQ ID NO: 1 or its derivatives. The invention further relates to a process for the production of polyunsaturated fatty acids (=PUFAs) with an organism which comprises the elongase gene and which organism produces high amounts of oils and especially oils with a high content of unsaturated fatty acids. Additionally the invention relates to an oil and/or fatty acid composition with a higher content of polyunsaturated C20 or C22 fatty acids with at least two double bonds and/or to a triacylglycerol composition with a higher content of said polyunsaturated fatty acids

    Whatever the Weather: Ambient Temperature Does Not Influence the Proportion of Males Born in New Zealand

    Get PDF
    BACKGROUND: The proportion of male births has been shown to be over 50% in temperate climates around the world. Given that fluctuations in ambient temperature have previously been shown to affect sex allocation in humans, we examined the hypothesis that ambient temperature predicts fluctuations in the proportion of male births in New Zealand. METHODOLOGY/PRINCIPAL FINDINGS: We tested three main hypotheses using time series analyses. Firstly, we used historical annual data in New Zealand spanning 1876-2009 to test for a positive effect of ambient temperature on the proportion of male births. The proportion of males born ranged by 3.17%, from 0.504 to 0.520, but no significant relationship was observed between male birth rates and mean annual temperature in the concurrent or previous years. Secondly, we examined whether changes in annual ambient temperature were negatively related to the proportion of male stillbirths from 1929-2009 and whether the proportion of male stillbirths negatively affected the proportion of male live births. We found no evidence that fewer male stillbirths occurred during warmer concurrent or previous years, though a declining trend in the proportion of male stillbirths was observed throughout the data. Thirdly, we tested whether seasonal ambient temperatures, or deviations from those seasonal patterns, were positively related to the proportion of male births using monthly data from 1980-2009. Patterns of male and female births are seasonal, but very similar throughout the year, resulting in a non-seasonal proportion of male births. However, no cross correlations between proportion of male births and lags of temperature were significant. CONCLUSIONS: Results showed, across all hypotheses under examination, that ambient temperatures were not related to the proportion of male births or the proportion of male stillbirths in New Zealand. While there is evidence that temperature may influence human sex allocation elsewhere, such effects of temperature are not universal

    Increased salt consumption induces body water conservation and decreases fluid intake

    Get PDF
    BACKGROUND: The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS: Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS:A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION: Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING: Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever
    • …
    corecore