473 research outputs found

    Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane

    Full text link
    We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity uu_\infty at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of uu_\infty. Furthermore a spacial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the directino of the flow as \emph{time} direction. The analysis is done in framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modeled by elliptic equations

    A geometric condition implying energy equality for solutions of 3D Navier-Stokes equation

    Full text link
    We prove that every weak solution uu to the 3D Navier-Stokes equation that belongs to the class L3L9/2L^3L^{9/2} and \n u belongs to L3L9/5L^3L^{9/5} localy away from a 1/2-H\"{o}lder continuous curve in time satisfies the generalized energy equality. In particular every such solution is suitable.Comment: 10 page

    The "Symplectic Camel Principle" and Semiclassical Mechanics

    Full text link
    Gromov's nonsqueezing theorem, aka the property of the symplectic camel, leads to a very simple semiclassical quantiuzation scheme by imposing that the only "physically admissible" semiclassical phase space states are those whose symplectic capacity (in a sense to be precised) is nh + (1/2)h where h is Planck's constant. We the construct semiclassical waveforms on Lagrangian submanifolds using the properties of the Leray-Maslov index, which allows us to define the argument of the square root of a de Rham form.Comment: no figures. to appear in J. Phys. Math A. (2002

    Comparative Analysis of the Mechanisms of Fast Light Particle Formation in Nucleus-Nucleus Collisions at Low and Intermediate Energies

    Full text link
    The dynamics and the mechanisms of preequilibrium-light-particle formation in nucleus-nucleus collisions at low and intermediate energies are studied on the basis of a classical four-body model. The angular and energy distributions of light particles from such processes are calculated. It is found that, at energies below 50 MeV per nucleon, the hardest section of the energy spectrum is formed owing to the acceleration of light particles from the target by the mean field of the projectile nucleus. Good agreement with available experimental data is obtained.Comment: 23 pages, 10 figures, LaTeX, published in Physics of Atomic Nuclei v.65, No. 8, 2002, pp. 1459 - 1473 translated from Yadernaya Fizika v. 65, No. 8, 2002, pp. 1494 - 150

    On the notion of phase in mechanics

    Full text link
    The notion of phase plays an esential role in both classical and quantum mechanics.But what is a phase? We show that if we define the notion of phase in phase (!) space one can very easily and naturally recover the Heisenberg-Weyl formalism; this is achieved using the properties of the Poincare-Cartan invariant, and without making any quantum assumption

    A New Fluorescent Sensor Based on 1H-pyrazolo[3,4-b]quinoline Skeleton. Part 2

    Get PDF
    A novel fluorescent dye bis-(pyridin-2-yl-methyl)-(1,3,4-triphenyl-1H-pyrazolo[3,4-b]quinolin-6-ylmethyl)-amine (P1) has been synthesized and investigated by means of steady state and time-resolved fluorescence techniques. This compound acts as sensor for fluorescence detection of small inorganic cations (lithium, sodium, barium, magnesium, calcium, and zinc) in highly polar solvents such as acetonitrile. The mechanism which allows application of this compound as sensor is an electron transfer from the electron-donative part of molecule (amine) to the acceptor part (pyrazoloquinoline derivative), which is retarded upon complexation of the electro-donative part by inorganic cations. The binding constants are strongly dependent on the charge density of the analyzed cations. The 2/1 complexes of P1 with Zn++ and Mg++ cations posses large binding constants. Moreover, in the presence of these cations a significant bathochromic shift of fluorescence is observed. The most probable explanation of such behaviour is the formation of intramolecular excimer. This is partially supported by the quantum chemical calculations

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor

    Full text link
    In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three-dimensional Navier-Stokes equations in the whole space, as well as for the case of periodic boundary conditions

    Global solutions of a free boundary problem for selfgravitating scalar fields

    Full text link
    The weak cosmic censorship hypothesis can be understood as a statement that there exists a global Cauchy evolution of a selfgravitating system outside an event horizon. The resulting Cauchy problem has a free null-like inner boundary. We study a selfgravitating spherically symmetric nonlinear scalar field. We show the global existence of a spacetime with a null inner boundary that initially is located outside the Schwarzschild radius or, more generally, outside an apparent horizon. The global existence of a patch of a spacetime that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit
    corecore