61 research outputs found

    Soluble Urokinase Plasminogen Activator Receptor Level Is an Independent Predictor of the Presence and Severity of Coronary Artery Disease and of Future Adverse Events

    Get PDF
    Introduction Soluble urokinase plasminogen activator receptor (suPAR) is an emerging inflammatory and immune biomarker. Whether suPAR level predicts the presence and the severity of coronary artery disease (CAD), and of incident death and myocardial infarction (MI) in subjects with suspected CAD, is unknown. Methods and Results We measured plasma suPAR levels in 3367 subjects (67% with CAD) recruited in the Emory Cardiovascular Biobank and followed them for adverse cardiovascular (CV) outcomes of death and MI over a mean 2.1±1.1 years. Presence of angiographic CAD (≥50% stenosis in ≥1 coronary artery) and its severity were quantitated using the Gensini score. Cox\u27s proportional hazard survival and discrimination analyses were performed with models adjusted for established CV risk factors and C-reactive protein levels. Elevated suPAR levels were independently associated with the presence of CAD (P\u3c0.0001) and its severity (P\u3c0.0001). A plasma suPAR level ≥3.5 ng/mL (cutoff by Youden\u27s index) predicted future risk of MI (hazard ratio [HR]=3.2; P\u3c0.0001), cardiac death (HR=2.62; P\u3c0.0001), and the combined endpoint of death and MI (HR=1.9; P\u3c0.0001), even after adjustment of covariates. The C-statistic for a model based on traditional risk factors was improved from 0.72 to 0.74 (P=0.008) with the addition of suPAR. Conclusion Elevated levels of plasma suPAR are associated with the presence and severity of CAD and are independent predictors of death and MI in patients with suspected or known CAD

    Prognostic value of adenosine stress cardiovascular magnetic resonance in patients with low-risk chest pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 5% of patients with an acute coronary syndrome are discharged from the emergency room with an erroneous diagnosis of non-cardiac chest pain. Highly accurate non-invasive stress imaging is valuable for assessment of low-risk chest pain patients to prevent these errors. Adenosine stress cardiovascular magnetic resonance (AS-CMR) is an imaging modality with increasing application. The goal of this study was to evaluate the negative prognostic value of AS-CMR among low-risk acute chest pain patients.</p> <p>Methods</p> <p>We studied 103 patients, mean 56.7 ± 12.3 years of age, with chest pain and no electrocardiographic evidence of ischemia and negative cardiac biomarkers of necrosis, who were admitted to the Cardiac Decision Unit of our institution. All patients underwent AS-CMR. A negative AS-CMR was defined as absence of all the following: regional wall motion abnormalities at rest; perfusion defects during stress (adenosine) and rest; and myocardial scar on late gadolinium enhancement images. The patients were followed for a mean of 277 (range 161-462) days. The primary end point was defined as the combination of cardiac death, nonfatal acute myocardial infarction, re-hospitalization for chest pain, obstructive coronary artery disease (>50% coronary stenosis on invasive angiography) and coronary revascularization.</p> <p>Results</p> <p>In 14 patients (13.6%), AS-CMR was positive. The remaining 89 patients (86.4%), who had negative AS-CMR, were discharged. No patient with negative AS-CMR reached the primary end-point during follow-up. The negative predictive value of AS-CMR was 100%.</p> <p>Conclusion</p> <p>AS-CMR holds promise as a useful tool to rule out significant coronary artery disease in patients with low-risk chest pain. Patients with negative AS-CMR have an excellent short and mid-term prognosis.</p

    Assessment of acute myocardial infarction: current status and recommendations from the North American society for cardiovascular imaging and the European society of cardiac radiology

    Get PDF
    There are a number of imaging tests that are used in the setting of acute myocardial infarction and acute coronary syndrome. Each has their strengths and limitations. Experts from the European Society of Cardiac Radiology and the North American Society for Cardiovascular Imaging together with other prominent imagers reviewed the literature. It is clear that there is a definite role for imaging in these patients. While comparative accuracy, convenience and cost have largely guided test decisions in the past, the introduction of newer tests is being held to a higher standard which compares patient outcomes. Multicenter randomized comparative effectiveness trials with outcome measures are required

    Correlates of Tricuspid Regurgitation as Determined by 3D Echocardiography: Pulmonary Arterial Pressure, Ventricle Geometry, Annular Dilatation, and Papillary Muscle Displacement

    No full text
    Background— While it is understood that annular dilatation contributes to tricuspid regurgitation (TR), other factors are less clear. The geometry of the right ventricle (RV) and left ventricle (LV) may alter tricuspid annulus size and papillary muscle (PM) positions leading to TR. Methods and Results— Three-dimensional echocardiographic images were obtained at Emory University Hospital using a GE Vivid 7 ultrasound system. End-diastolic area was used to classify ventricle geometry: control (n=21), isolated RV dilatation (n=17), isolated LV dilatation (n=13), and both RV and LV dilatation (n=13). GE EchoPAC was used to measure annulus area and position of the PM tips. Patients with RV dilatation had significant ( P ≤ 0.05) displacement of all PMs apically and the septal PM and posterior PM away from the center of the RV toward the LV. Patients with LV dilatation had significant ( P ≤0.05) apical displacement of the anterior PM. Pulmonary arterial pressure ( r =0.66), annulus area ( r =0.51), apical displacement of the anterior PM ( r =0.26), posterior PM ( r =0.49), and septal PM ( r =0.40), lateral displacement of the septal PM ( r =0.37) and posterior PM ( r =0.40), and tenting area and height ( r =0.54, 0.49), were significantly ( P ≤0.05) correlated to the grade of TR. Ventricle classification ( r =0.46) and RV end-diastolic area ( r =0.48) also were correlated with the grade of TR. A regression analysis found ventricle classification ( P =0.001), pulmonary arterial pressure ( P ≤0.001) annulus area ( P =0.027), and apical displacement of the anterior PM ( P =0.061) to be associated with the grade of TR. Conclusions— Alterations in ventricular geometry can lead to TR by altering both tricuspid annulus size and PM position. Understanding these geometric interactions with the aim of correcting pathological alterations of the tricuspid valve apparatus may lead to more robust repairs
    corecore