24 research outputs found
Theory of the collapsing axisymmetric cavity
We investigate the collapse of an axisymmetric cavity or bubble inside a
fluid of small viscosity, like water. Any effects of the gas inside the cavity
as well as of the fluid viscosity are neglected. Using a slender-body
description, we show that the minimum radius of the cavity scales like , where is the time from collapse. The exponent
very slowly approaches a universal value according to . Thus, as observed in a number of recent experiments, the
scaling can easily be interpreted as evidence of a single non-trivial scaling
exponent. Our predictions are confirmed by numerical simulations
Ultrasonic cavitation near a tissue layer
AbstractIn this paper we examine the dynamics of an initially stable bubble due to ultrasonic forcing by an acoustic wave. A tissue layer is modelled as a density interface acted upon by surface tension to mimic membrane effects. The effect of a rigid backing to the thin tissue layer is investigated. We are interested in ultrasound contrast agent type bubbles which have immediate biomedical applications such as the delivery of drugs and the instigation of sonoporation. We use the axisymmetric boundary integral technique detailed in Curtiss et al. (J. Comput. Phys., 2013, submitted) to model the interaction between a single bubble and the tissue layer. We have identified a new peeling mechanism whereby the re-expansion of a toroidal bubble can peel away tissue from a rigid backing. We explore the problem over a large range of parameters including tissue layer depth, interfacial tension and ultrasonic forcing.</jats:p
Attenuation technique for measuring sediment displacement levels
A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique
In Situ Data and Effect Correlation During September 2017 Solar Particle Event
Solar energetic particles are one of the main sources of particle radiation seen in space. In the first part of September 2017 the most active solar period of cycle 24 produced four large X-class flares and a series of (interplanetary) coronal mass ejections, which gave rise to radiation storms seen over all energies and at the ground by neutron monitors. This paper presents comprehensive cross comparisons of in situ radiation detector data from near-Earth satellites to give an appraisal on the state of present data processing for monitors of such particles. Many of these data sets have been the target of previous cross calibrations, and this event with a hard spectrum provides the opportunity to validate these results. As a result of the excellent agreement found between these data sets and the use of neutron monitor data, this paper also presents an analytical expression for fluence spectrum for the event. Derived ionizing dose values have been computed to show that although there is a significant high-energy component, the event was not particularly concerning as regards dose effects in spacecraft electronics. Several sets of spacecraft data illustrating single event effects are presented showing a more significant impact in this regard. Such a hard event can penetrate thick shielding; human dose quantities measured inside the International Space Station and derived through modeling for aircraft altitudes are also presented. Lastly, simulation results of coronal mass ejection propagation through the heliosphere are presented along with data from Mars-orbiting spacecraft in addition to data from the Mars surface
LASER-GENERATED CAVITATION BUBBLES IN A FLUID LAYER OF FINITE DEPTH
Abstract. Laser-generated cavitation bubbles in a thin liquid layer lead to the formation of fast liquid jets at both the free surface to the liquid layer and as an opposing jet within the collapsing bubble. This paper studies this phenomenom from both an analytical perspecitive, using the Kelvin impulse, and through computational techniques based on the boundary integral method. Output includes bubble and jet shapes and the percentage of the impulse and energy in the jet of the collapsing bubble. Calculations indicate that in excess of 30% of the liquid energy and 60% of the impulse can be found in the jet in the examples considered in this paper