3 research outputs found
Low dose inflammatory potential of silica particles in human-derived THP-1 macrophage cell culture studies - Mechanism and effects of particle size and iron.
Silica and iron are major constituents in ambient particulate matter, and iron is a common impurity in many engineered nanomaterials. The purpose of this work was to determine the pro-inflammatory and other biological effects and mechanism of particle size and iron presence under low dose, non-cytotoxic conditions that are likely to approximate actual exposure levels, in contrast with higher dose studies in which cytotoxicity occurs. Specifically, human-derived THP-1 macrophages were exposed to 1 μg/ml of pristine and iron-coated 50 nm and 2 μm engineered silica nanoparticles. Particles were first characterized for size, size distribution, surface area, iron concentration, phase and aggregation in cell culture media. Then, biological assays were conducted to determine a non-lethal dose used in subsequent experiments. Superoxide production, lipid peroxidation, and increased pro-inflammatory cytokine (TNF-α and IL-1β) mRNA expression were measured as a function of particle size and iron presence. Smaller particle size and the presence of iron increased superoxide production, lipid peroxidation, and the induction of pro-inflammatory cytokine mRNA expression. Separate addition of an iron-chelator, a scavenger of superoxide and hydrogen peroxide, and an inhibitor of phosphatidylcholine specific phospholipase C (PC-PLC), suppressed the increase in cytokine mRNA expression. Furthermore, free iron itself showed none of the aforementioned effects. The results highlight the importance of particle size and iron in lung inflammation for both natural and engineered nanomaterials, under low dose, non-toxic conditions, and support the role of an oxidant, lipid peroxidation and PC-PLC dependent inflammatory mechanism
Recommended from our members
Low dose inflammatory potential of silica particles in human-derived THP-1 macrophage cell culture studies – Mechanism and effects of particle size and iron
Silica and iron are major constituents in ambient particulate matter, and iron is a common impurity in many engineered nanomaterials. The purpose of this work was to determine the pro-inflammatory and other biological effects and mechanism of particle size and iron presence under low dose, non-cytotoxic conditions that are likely to approximate actual exposure levels, in contrast with higher dose studies in which cytotoxicity occurs. Specifically, human-derived THP-1 macrophages were exposed to 1 μg/ml of pristine and iron-coated 50 nm and 2 μm engineered silica nanoparticles. Particles were first characterized for size, size distribution, surface area, iron concentration, phase and aggregation in cell culture media. Then, biological assays were conducted to determine a non-lethal dose used in subsequent experiments. Superoxide production, lipid peroxidation, and increased pro-inflammatory cytokine (TNF-α and IL-1β) mRNA expression were measured as a function of particle size and iron presence. Smaller particle size and the presence of iron increased superoxide production, lipid peroxidation, and the induction of pro-inflammatory cytokine mRNA expression. Separate addition of an iron-chelator, a scavenger of superoxide and hydrogen peroxide, and an inhibitor of phosphatidylcholine specific phospholipase C (PC-PLC), suppressed the increase in cytokine mRNA expression. Furthermore, free iron itself showed none of the aforementioned effects. The results highlight the importance of particle size and iron in lung inflammation for both natural and engineered nanomaterials, under low dose, non-toxic conditions, and support the role of an oxidant, lipid peroxidation and PC-PLC dependent inflammatory mechanism
Ofatumumab versus Teriflunomide in Multiple Sclerosis
BACKGROUND: Ofatumumab, a subcutaneous anti-CD20 monoclonal antibody, selectively depletes B cells. Teriflunomide, an oral inhibitor of pyrimidine synthesis, reduces T-cell and B-cell activation. The relative effects of these two drugs in patients with multiple sclerosis are not known. METHODS: In two double-blind, double-dummy, phase 3 trials, we randomly assigned patients with relapsing multiple sclerosis to receive subcutaneous ofatumumab (20 mg every 4 weeks after 20-mg loading doses at days 1, 7, and 14) or oral teriflunomide (14 mg daily) for up to 30 months. The primary end point was the annualized relapse rate. Secondary end points included disability worsening confirmed at 3 months or 6 months, disability improvement confirmed at 6 months, the number of gadolinium-enhancing lesions per T1-weighted magnetic resonance imaging (MRI) scan, the annualized rate of new or enlarging lesions on T2-weighted MRI, serum neurofilament light chain levels at month 3, and change in brain volume. RESULTS: Overall, 946 patients were assigned to receive ofatumumab and 936 to receive teriflunomide; the median follow-up was 1.6 years. The annualized relapse rates in the ofatumumab and teriflunomide groups were 0.11 and 0.22, respectively, in trial 1 (difference, -0.11; 95% confidence interval [CI], -0.16 to -0.06; P<0.001) and 0.10 and 0.25 in trial 2 (difference, -0.15; 95% CI, -0.20 to -0.09; P<0.001). In the pooled trials, the percentage of patients with disability worsening confirmed at 3 months was 10.9% with ofatumumab and 15.0% with teriflunomide (hazard ratio, 0.66; P = 0.002); the percentage with disability worsening confirmed at 6 months was 8.1% and 12.0%, respectively (hazard ratio, 0.68; P = 0.01); and the percentage with disability improvement confirmed at 6 months was 11.0% and 8.1% (hazard ratio, 1.35; P = 0.09). The number of gadolinium-enhancing lesions per T1-weighted MRI scan, the annualized rate of lesions on T2-weighted MRI, and serum neurofilament light chain levels, but not the change in brain volume, were in the same direction as the primary end point. Injection-related reactions occurred in 20.2% in the ofatumumab group and in 15.0% in the teriflunomide group (placebo injections). Serious infections occurred in 2.5% and 1.8% of the patients in the respective groups. CONCLUSIONS: Among patients with multiple sclerosis, ofatumumab was associated with lower annualized relapse rates than teriflunomide. (Funded by Novartis; ASCLEPIOS I and II ClinicalTrials.gov numbers, NCT02792218 and NCT02792231.)