3 research outputs found

    An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    Get PDF
    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%. © The Author(s) 20174

    Sensor to monitor localized stresses on steel surfaces using the magnetostrictive delay line technique

    No full text
    In this paper, a new type of force sensor is presented, able to monitor localized residual stresses on steel surfaces. The principle of operation of the proposed sensor is based on the monitoring of the force exerted between a permanent magnet and the under-test steel which is dependent on the surface permeability of the steel providing a non-hysteretic response. The sensor’s response, calibration, and performance are described followed by a discussion concerning the applications for steel health monitoring. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Coherent radiation sources based on laser driven plasma waves

    Get PDF
    Here we explore ways of converting laser radiation into coherent electromagnetic radiation using laser-driven plasma waves. Several schemes are presented, including colliding laser pulses in magnetized plasma and utilizing ultra-short electron bunches from laser wakefield accelerators to produce intense single-cycle pulses through coherent transition radiation and few-cycle coherent synchrotron radiation in undulators and plasma channels. These sources rely on high current electron bunches with femtosecond durations, which can result in radiation over a broad range of frequencies from 1 to 105 THz
    corecore