81 research outputs found

    The Structure of Coronal Mass Ejections Recorded by the K-Coronagraph at Mauna Loa Solar Observatory

    Full text link
    Previous survey studies reported that coronal mass ejections (CMEs) can exhibit various structures in white-light coronagraphs, and ∼\sim30\% of them have the typical three-part feature in the high corona (e.g., 2--6 R⊙R_\odot), which has been taken as the prototypical structure of CMEs. It is widely accepted that CMEs result from eruption of magnetic flux ropes (MFRs), and the three-part structure can be understood easily by means of the MFR eruption. It is interesting and significant to answer why only ∼\sim30\% of CMEs have the three-part feature in previous studies. Here we conduct a synthesis of the CME structure in the field of view (FOV) of K-Coronagraph (1.05--3 R⊙R_\odot). In total, 369 CMEs are observed from 2013 September to 2022 November. After inspecting the CMEs one by one through joint observations of the AIA, K-Coronagraph and LASCO/C2, we find 71 events according to the criteria: 1) limb event; 2) normal CME, i.e., angular width ≥\geq 30∘^{\circ}; 3) K-Coronagraph caught the early eruption stage. All (or more than 90\% considering several ambiguous events) of the 71 CMEs exhibit the three-part feature in the FOV of K-Coronagraph, while only 30--40\% have the feature in the C2 FOV (2--6 R⊙R_\odot). For the first time, our studies show that 90--100\% and 30--40\% of normal CMEs possess the three-part structure in the low and high corona, respectively, which demonstrates that many CMEs can lose the three-part feature during their early evolutions, and strongly supports that most (if not all) CMEs have the MFR structures.Comment: 10 pages, 4 figures, accepted for publication in ApJ

    Impacts of CaO solid particles in carbon dioxide absorption process from ship emission with NaOH solution

    Get PDF
    CO2 emitted from ship exhaust is one of the major sources of atmospheric pollution. In order to reduce ship CO2 emissions, this paper comes up with the idea of recovering CO2 from ship exhaust by NaOH solution and improves the absorption rate by adding CaO solid particles. The effect mechanism of CaO solid particles on CO2 absorption efficiency is analyzed in detail, and the mathematical model is deduced and the CaO enhancement factor is calculated through experiments. Experiment result demonstrates that the effect of CaO solid particles on the absorption of CO2 in alkali solution is significant. The absorption rate of pure CO2 gas, the simulated ship exhaust gas and 6135AZG marine diesel engine emission can be increased by 10%, 15.85% and 10.30%, respectively. So it can be seen that CaO solid particles play an important role in improving the absorption efficiency of ship CO2 emission

    Optimized mixed Markov models for motif identification

    Get PDF
    BACKGROUND: Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. RESULTS: We introduce a novel and flexible model, the Optimized Mixture Markov model (OMiMa), and related methods to allow adjustment of model complexity for different motifs. In comparison with other leading methods, OMiMa can incorporate more than the NNSplice's pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites), we found OMiMa's performance superior to the other leading methods in terms of prediction accuracy, required size of training data or computational time. Our OMiMa system, to our knowledge, is the only motif finding tool that incorporates automatic selection of the best model. OMiMa is freely available at [1]. CONCLUSION: Our optimized mixture of Markov models represents an alternative to the existing methods for modeling dependent structures within a biological motif. Our model is conceptually simple and effective, and can improve prediction accuracy and/or computational speed over other leading methods

    Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein–protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)–gene, miRNA–gene, and gene–disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases

    Machine learning for the prediction of all-cause mortality in patients with sepsis-associated acute kidney injury during hospitalization

    Get PDF
    BackgroundSepsis-associated acute kidney injury (S-AKI) is considered to be associated with high morbidity and mortality, a commonly accepted model to predict mortality is urged consequently. This study used a machine learning model to identify vital variables associated with mortality in S-AKI patients in the hospital and predict the risk of death in the hospital. We hope that this model can help identify high-risk patients early and reasonably allocate medical resources in the intensive care unit (ICU).MethodsA total of 16,154 S-AKI patients from the Medical Information Mart for Intensive Care IV database were examined as the training set (80%) and the validation set (20%). Variables (129 in total) were collected, including basic patient information, diagnosis, clinical data, and medication records. We developed and validated machine learning models using 11 different algorithms and selected the one that performed the best. Afterward, recursive feature elimination was used to select key variables. Different indicators were used to compare the prediction performance of each model. The SHapley Additive exPlanations package was applied to interpret the best machine learning model in a web tool for clinicians to use. Finally, we collected clinical data of S-AKI patients from two hospitals for external validation.ResultsIn this study, 15 critical variables were finally selected, namely, urine output, maximum blood urea nitrogen, rate of injection of norepinephrine, maximum anion gap, maximum creatinine, maximum red blood cell volume distribution width, minimum international normalized ratio, maximum heart rate, maximum temperature, maximum respiratory rate, minimum fraction of inspired O2, minimum creatinine, minimum Glasgow Coma Scale, and diagnosis of diabetes and stroke. The categorical boosting algorithm model presented significantly better predictive performance [receiver operating characteristic (ROC): 0.83] than other models [accuracy (ACC): 75%, Youden index: 50%, sensitivity: 75%, specificity: 75%, F1 score: 0.56, positive predictive value (PPV): 44%, and negative predictive value (NPV): 92%]. External validation data from two hospitals in China were also well validated (ROC: 0.75).ConclusionsAfter selecting 15 crucial variables, a machine learning-based model for predicting the mortality of S-AKI patients was successfully established and the CatBoost model demonstrated best predictive performance

    An Integrated Pipeline for the Genome-Wide Analysis of Transcription Factor Binding Sites from ChIP-Seq

    Get PDF
    ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated, open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis, visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data

    Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force

    Get PDF
    Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments

    Heat transfer characteristics of a binary thin liquid film in a microchannel with constant heat flux boundary condition

    No full text
    Thin film evaporation of multi-component fluids in microchannels is important in many industrial applications, which requires comprehensive modeling of the transport mechanisms in the liquid, gas and solid phases. This paper presents a numerical study on the heat transfer characteristics of a binary thin liquid film in a micro channel with constant heat flux boundary condition, using the enhanced Young-Laplace equation that considers the effect of disjoining pressure for binary fluids. Effects of temperature, microchannel size, and non-condensable gas on the binary thin film heat transfer was analyzed. The results show that the thin film contribution to the total heat transfer rate reduces when the initial temperature increases, but the difference between them decreases as the microchannel size reduces. Size effect can be prominent when the characteristic microchannel size is smaller than 10 gm. When the microchannel size decreases, the cumulative heat transfer rate across the interface of the solution decreases, while the thin film contribution to the total heat transfer rate increases obviously. The non-condensable gas deteriorates the cumulative heat transfer rate, but the deterioration reduces under the high temperature condition as compared to that under the low temperature condition. Comparison of the results shows that the temperature and microchannel size have the greatest effect on the heat transfer followed by the non-condensable gas. This can be efficiently utilized for heat transfer enhancement and thermal design in applications involving phase-change heat transfer of multi-component fluids in microchannels

    On New Extensions of Hilbert's Integral Inequality

    Get PDF
    It is shown that some new extensions of Hilbert's integral inequality with parameter λ(λ>1/2) can be established by introducing a proper weight function. In particular, when λ=1, a refinement of Hilbert's integral inequality is obtained. As applications, some new extensions of Widder's inequality and Hardy-Littlewood's inequality are given

    Enhancing absorption properties of composite nanosphere and nanowire arrays by localized surface plasmon resonance shift

    No full text
    Nanoparticles with nonmetallic core and metallic shell can improve the spectral solar absorption efficiency for traditional working fluids, due to the localized surface plasmon resonance (LSPR) effect exists at the surfaces of these core-shell composite nanoparticles. In this work, the effect of geometry and material, and hence the LSPR effect, on the optical absorption properties of core-shell nanostructures was numerically demonstrated by the finite difference time domain method. The nanostructures were formed by varying the inner and outer radii of the composite nanospheres and nanowires and by changing the particle spacing for their arrays. The result indicates that varying the inner radius itself can tune the absorption efficiency factors of the nanostructures monotonously, while an optimal outer radius may exist for maximizing the absorption efficiency factors. It also shows that varying the inner radius itself can widen the absorption spectrums for the arrays, but the absorptance tends to increase with decreasing inner radius or particle spacing. Meanwhile, the second absorption peaks may be observed for nanowires or nanosphere/nanowire arrays, which can be tuned by the resonance shifts induced by the change of either inner or outer radius and hence the LSPR effect. The coupled LSPR effect under studied can be efficiently utilized for tuning the optical absorption properties of nanoparticles used in many applications including photothermal conversion, and perspective also exists for many other applications including surface-enhanced Raman spectroscopy (SERS) enhancement. Keywords: Core-shell, Nanosphere, Nanowire, Array, Resonance shift, Optical absorptio
    • …
    corecore