750 research outputs found

    FY 2000 Juvenile Justice and Delinquency Prevention Act Compliance Monitoring Report

    Get PDF
    The Juvenile Justice and Delinquency Prevention Act (JJDPA) mandates removal of status offenders and nonoffenders from secure detention and correctional facilities, sight and sound separation of juveniles and adults, and removal of juveniles from adult jails and lockups. In Alaska, 2 instances of status offenders held in secure detention were recorded in FY 2000, compared with 485 violations in the baseline year of CY 1976. In Alaska, 17 separation violations were recorded in FY 2000 (45 projected), representing a 98% reduction from the CY 1976 baseline of 824 violations. 82 jail removal violations were projected (50 actual), representing an substantial reduction from the CY 1980 baseline.Alaska Department of Health and Social Services, Division of Juvenile JusticeA. General Information / B. Removal of Status Offenders and Nonoffenders from Secure Detention and Correctional Facilities / C. De Minimis Request / D. Progress Made in Achieving Removal of Status Offenders and Nonoffenders from Secure Detention and Correctional Facilities / E. Separation of Juveniles and Adults / F. Removal of Juveniles from Adult Jails and Lockups / G. De Minimis Request: Substantive / APPENDICES / I. Method of Analysis / II. Fiscal Year 2000 Violations by Offense Type and Location / III. Common Offense Acronym

    CO observations and investigation of triggered star formation towards N10 infrared bubble and surroundings

    Full text link
    We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ\mum, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual triggered star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting as infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered, on the edge of the HII region. We carried out observations of 12^{12}CO(1-0) and 13^{13}CO(1-0) emission at PMO 13.7-m towards N10. We also analyzed the IR and sub-mm emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding HII region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and of the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified, from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation time scale favors the "Radiation-Driven Implosion" mechanism of star formation. N10 reveals to be specially interesting case with gas structures in a narrow frontier between HII region and surrounding molecular material, and with a range of ages of YSOs situated in region indicating triggered star formation.Comment: Version 2 - Submmited to ApJ (under review

    Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultra subdwarfs (usdM)

    Full text link
    The current classification system of M stars on the main sequence distinguishes three metallicity classes (dwarfs - dM, subdwarfs - sdM, and extreme subdwarfs - esdM). The spectroscopic definition of these classes is based on the relative strength of prominent CaH and TiO molecular absorption bands near 7000A, as quantified by three spectroscopic indices (CaH2, CaH3, and TiO5). We re-examine this classification system in light of our ongoing spectroscopic survey of stars with proper motion \mu > 0.45 "/yr, which has increased the census of spectroscopically identified metal-poor M stars to over 400 objects. Kinematic separation of disk dwarfs and halo subdwarfs suggest deficiencies in the current classification system. Observations of common proper motion doubles indicates that the current dM/sdM and sdM/esdM boundaries in the [TiO5,CaH2+CaH3] index plane do not follow iso-metallicity contours, leaving some binaries inappropriately classified as dM+sdM or sdM+esdM. We propose a revision of the classification system based on an empirical calibration of the TiO/CaH ratio for stars of near solar metallicity. We introduce the parameter \zeta_{TiO/CaH} which quantifies the weakening of the TiO bandstrength due to metallicity effect, with values ranging from \zeta_{TiO/CaH}=1 for stars of near-solar metallicity to \zeta_{TiO/CaH}~0 for the most metal-poor (and TiO depleted) subdwarfs. We redefine the metallicity classes based on the value of the parameter \zeta_{TiO/CaH}; and refine the scheme by introducing an additional class of ultra subdwarfs (usdM). We introduce sequences of sdM, esdM, and usdM stars to be used as formal classification standards.Comment: 15 pages, accepted for publication in the Astrophysical Journa

    The Paradox of Compacts: final report to the Home Office on monitoring the impact of Compacts

    Get PDF
    The Compact is an important building block in achieving a better relationship between Government and the voluntary and community sector. We are fully committed to partnership working with the sector and increasing their role in civil society and in the delivery of public s e rvices. The Compact helps us to work better together, so that we can better meet the needs of communities

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Characterization of the Benchmark Binary NLTT 33370

    Full text link
    We report the confirmation of the binary nature of the nearby, very low-mass system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708 Angstrom absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and spectral morphology that is consistent with other young, very low-mass dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the Solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The Astrophysical Journa
    • …
    corecore