62 research outputs found

    Inhomogeneous Magnetism in La-doped CaMnO3. (II) Mesoscopic Phase Separation due to Lattice-coupled FM Interactions

    Full text link
    A detailed investigation of mesoscopic magnetic and crystallographic phase separation in Ca(1-x)La(x)MnO3, 0.00<=x<=0.20, is reported. Neutron powder diffraction and DC-magnetization techniques have been used to isolate the different roles played by electrons doped into the eg level as a function of their concentration x. The presence of multiple low-temperature magnetic and crystallographic phases within individual polycrystalline samples is argued to be an intrinsic feature of the system that follows from the shifting balance between competing FM and AFM interactions as a function of temperature. FM double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions at higher temperatures, and couple more strongly with the lattice via orbital polarization. These FM interactions thereby play a privileged role, even at low eg electron concentrations, by virtue of structural modifications induced above the AFM transition temperatures.Comment: 8 pages, 7 figure

    Evaluating Imaging Biomarkers of Acquired Resistance to Targeted EGFR Therapy in Xenograft Models of Human Head and Neck Squamous Cell Carcinoma.

    Get PDF
    Background: Overexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value. Methods: Functional MRI and 18F-FDG PET were used to visualize and quantify imaging biomarkers associated with drug response within size-matched EGFR TKI-resistant CAL 27 (CALR) and sensitive (CALS) HNSCC xenografts in vivo, and pathological correlates sought. Results: Intrinsic susceptibility, oxygen-enhanced and dynamic contrast-enhanced MRI revealed significantly slower baseline R2∗ , lower hyperoxia-induced ΔR2∗ and volume transfer constant Ktrans in the CALR tumors which were associated with significantly lower Hoechst 33342 uptake and greater pimonidazole-adduct formation. There was no difference in oxygen-induced ΔR1 or water diffusivity between the CALR and CALS xenografts. PET revealed significantly higher relative uptake of 18F-FDG in the CALR cohort, which was associated with significantly greater Glut-1 expression. Conclusions: CALR xenografts established from HNSCC cells resistant to EGFR TKIs are more hypoxic, poorly perfused and glycolytic than sensitive CALS tumors. MRI combined with PET can be used to non-invasively assess HNSCC response/resistance to EGFR inhibition

    Anxiety Disorders and Sensory Over-Responsivity in Children with Autism Spectrum Disorders: Is There a Causal Relationship?

    Get PDF
    Anxiety disorders and sensory over-responsivity (SOR) are common in children with autism spectrum disorders (ASD), and there is evidence for an association between these two conditions. Currently, it is unclear what causal mechanisms may exist between SOR and anxiety. We propose three possible theories to explain the association between anxiety and SOR: (a) SOR is caused by anxiety; (b) Anxiety is caused by SOR; or (c) SOR and anxiety are causally unrelated but are associated through a common risk factor or diagnostic overlap. In this paper, we examine support for each theory in the existing anxiety, autism, and neuroscience literature, and discuss how each theory informs choice of interventions and implications for future studies

    Improving a Natural CaMKII Inhibitor by Random and Rational Design

    Get PDF
    CaM-KIIN has evolved to inhibit stimulated and autonomous activity of the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) efficiently, selectively, and potently (IC50 ∼100 nM). The CN class of peptides, derived from the inhibitory region of CaM-KIIN, provides powerful new tools to study CaMKII functions. The goal of this study was to identify the residues required for CaMKII inhibition, and to assess if artificial mutations could further improve the potency achieved during evolution.First, the minimal region with full inhibitory potency was identified (CN19) by determining the effect of truncated peptides on CaMKII activity in biochemical assays. Then, individual residues of CN19 were mutated. Most individual Ala substitutions decreased potency of CaMKII inhibition, however, P3A, K13A, and R14A increased potency. Importantly, this initial Ala scan suggested a specific interaction of the region around R11 with the CaMKII substrate binding site, which was exploited for further rational mutagenesis to generate an optimized pseudo-substrate sequence. Indeed, the potency of the optimized peptide CN19o was >250fold improved (IC50 <0.4 nM), and CN19o has characteristics of a tight-binding inhibitor. The selectivity for CaMKII versus CaMKI was similarly improved (to almost 100,000fold for CN19o). A phospho-mimetic S12D mutation decreased potency, indicating potential for regulation by cellular signaling. Consistent with importance of this residue in inhibition, most other S12 mutations also significantly decreased potency, however, mutation to V or Q did not.These results provide improved research tools for studying CaMKII function, and indicate that evolution fine-tuned CaM-KIIN not for maximal potency of CaMKII inhibition, but for lower potency that may be optimal for dynamic regulation of signal transduction

    Pharmacological Alterations of Anxious Behaviour in Mice Depending on Both Strain and the Behavioural Situation

    Get PDF
    A previous study comparing non-emotive mice from the strain C57BL/6/ByJ with ABP/Le mice showed ABP/Le to be more anxious in an open-field situation. In the present study, several compounds affecting anxiety were assayed on ABP/Le and C57BL/6/ByJ mice using three behavioural models of anxiety: the elevated plus-maze, the light-dark discrimination test and the free exploratory paradigm. The compounds used were the full benzodiazepine receptor agonist, chlordiazepoxide, and the antagonist, flumazenil, the GABAA antagonist, bicuculline, the full 5-HT1A agonist 8-OH-DPAT, and the mixed 5-HT1A/5-HT1B agonist, RU 24969. Results showed the effect of the compounds to be dependent on both the strain and the behavioural task. Several compounds found to be anxiolytic in ABP/Le mice had an anxiogenic effect on C57BL/6/ByJ mice. More behavioural changes were observed for ABP/Le in the elevated plus-maze, but the clearest findings for C57BL/6/ByJ mice were observed in the light-dark discrimination apparatus. These data demonstrate that anxious behaviour is a complex phenomenon which cannot be described by a single behavioural task nor by the action of a single compound

    Strategies and guidance for establishing a practical radiation protection culture in Europe in case of long term radioactive contamination after a nuclear accident: The SAGE Project

    No full text
    The evaluation of the rehabilitation strategies implemented in the contaminated territories of the CIS countries affected by the accident at the Chernobyl Nuclear Power Plant highlighted the need and importance to involve the population in the day-to-day management of the radiological situation, to complement the rehabilitation programme implemented by public authorities. The ETHOS experience in Belarus has revealed that to be effective and sustainable, this involvement must rely on the dissemination of a practical radiological protection culture within all sectors of the population and especially within professionals in charge of public health. The objective of the SAGE Project is to contribute to the development of strategies and guidance for implementing and disseminating such a culture in Western Europe, in case of a nuclear incident or accident with long-term radiological consequences. This paper presents the structure of the project, the stakeholder involvement process which has driven its realisation and the handbook on practical radiation protection culture which was elaborated, with different associated computer tools for people living in a contaminated territory

    Surface Reactivity Control Of A Borosilicate Glass Using Thermal Poling

    No full text
    The ability to control glass surface reactivity at different length enables key properties required for future smart substrates . Employing a thermal poling process on a specific borosilicate glass composition can yield a surface with tailored physical and chemical properties. This work shows that during poling, alkali contained in the glass matrix migrates from the anode to the cathode side of the specimen, yielding the formation of an alkali-depleted layer under the anode. We have shown that this process is responsible for structural changes in the glass network and the formation of a frozen electric field within the glass. Network reorganization is linked to the creation of BØ3 units, which replace BØ4- entities upon migration of the alkali ions. The resulting newly charged borate structure leads to a measurable change in the glass\u27 affinity to atmospheric water, being attracted to the poled anodic zone. Such spatial control of surface hydrophilicity can aid in the creation of tailored surface functionality
    corecore