177 research outputs found

    Reliability of knee joint position sense measurement: a comparison between goniometry and image capture methods

    Get PDF
    Aims: Evaluate the intra-rater and inter-rater reliability of hand-held goniometry compared to image capture (IMC) in the assessment of joint position sense (JPS) in healthy participants. Methodology: Repeated-measures observational study design was undertaken with 36 asymptomatic university students of both genders aged between 18 to 45 years. JPS in the knee was assessed by two assessors over two sessions (one-week interval) using hand-held goniometry and IMC methods. Joint position sense was assessed at four target knee flexion angles. Intra- and inter-rater reliability was assessed with absolute error (AE), relative error (RE) and intra-class correlation coefficient. Findings: Inter-rater reliability for goniometry was poor to substantial (ICC: 0.00 to 0.64) and was poor to moderate (ICC: 0.00 to 0.47) for IMC. Intra-rater reliability for goniometry was poor to moderate (ICC: 0.00 to 0.42) and poor to moderate for IMC (ICC: 0.00 to 0.41). AE for goniometry ranged from 3.2° to 8.6°, with RE from 0.1°-8.3°. For IMC, AE for goniometry was 5.3° to 12.5°, with RE ranging from 0.1° to 11.1°. Principal Conclusions: Neither goniometry nor IMC appeared superior to the other in JPS assessment. Caution should be made when considering the reliability for goniometry and IMC before clinical assessment is made

    The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have been carried out in order to investigate the effect of ankle bracing on ankle joint function and performance. However, no study so far has examined the role of skin-brace interface pressure in neuromuscular control. The aim of this study was to investigate the effect of different skin-ankle brace interface pressures on quiet single limb balance and the electromyographic (EMG) activation sequence of four lower limb muscles.</p> <p>Methods</p> <p>Thirty three male physical education students who volunteered to take part in the study were measured under three ankle brace conditions: i) without brace, ii) with brace and 30 kPa application pressure and iii) with brace and 60 kPa application pressure. Single limb balance (anteroposterior and mediolateral parameter) was assessed on the dominant lower limb, with open and closed eyes, on a force platform, simultaneously with the EMG recording of four lower lower limb muscles' (gastrocnemius, peroneus longus, rectus femoris and biceps femoris) activation onset.</p> <p>Results</p> <p>The results showed that overall balance (total stability parameter) was not significantly affected in any of the three ankle brace conditions. However, the anteroposterior centre of pressure excursion and centre of pressure excursion velocity were significantly increased with the application of ankle brace, both with 30 and 60 kPa application pressures. Furthermore, it was found that single limb balance was significantly worse with closed eyes compared to open eyes. EMG measurements showed that the sequence of lower limb activation onset was not affected in any of the three ankle brace application conditions. The results of this study showed that the application of an ankle brace with two different skin-brace interface pressures had no effect on overall single limb balance and the sequence of lower limb muscle activation.</p> <p>Conclusion</p> <p>These findings suggest that peripheral joint receptors are either not adequately stimulated by the brace application and therefore are not able to alter the balance control strategy of the CNS, or that they play a less important role in the control of single limb balance. Further research is needed in this area with more dynamic and functional measurements, before the safe use of ankle bracing can be widely recommended.</p

    Test-retest reliability of knee kinesthesia in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sensory information from mechanoreceptors in the skin, muscles, tendons, and joint structures plays an important role in joint stability. A joint injury can lead to disruption of the sensory system, which can be measured by proprioceptive acuity. When evaluating proprioception, assessment tools need to be reliable. The aim of this study was to assess the test-retest reliability of a device designed to measure knee proprioception.</p> <p>Methods</p> <p>Twenty-four uninjured individuals (14 women and 10 men) were examined with regard to test-retest reliability of knee kinesthesia, measured by the threshold to detection of passive motion (TDPM). Measurements were performed towards extension and flexion from the two starting positions, 20 degrees and 40 degrees knee joint flexion, giving four variables. The mean difference between test and retest together with the 95% confidence interval (test 2 minus test 1), the intraclass correlation coefficient (ICC<sub>2,1</sub>), and Bland and Altman graphs with limits of agreement, were used as statistical methods for assessing test-retest reliability.</p> <p>Results</p> <p>The intraclass correlation coefficients ranged from 0.59 to 0.70 in all variables except one. No difference was found between test and retest in three of the four TDPM variables. TDPM would need to decrease between 10% and 38%, and increase between 17% and 24% in groups of uninjured subjects to be 95% confident of detecting a real change. The limits of agreement were rather wide in all variables. The variables associated with the 20-degree starting position tended to have higher intraclass correlation coefficients and narrower limits of agreement than those associated with 40 degrees.</p> <p>Conclusion</p> <p>Three TDPM variables were considered reliable for observing change in groups of subjects without pathology. However, the limits of agreement revealed that small changes in an individual's performance cannot be detected. The higher intraclass correlation coefficients and the narrower limits of agreement in the variables associated with the starting position of 20 degrees knee joint flexion, indicate that these variables are more reliable than those associated with 40 degrees. We, therefore, recommend that the TDPM be measured with a 20-degree starting position.</p

    A treatment applying a biomechanical device to the feet of patients with knee osteoarthritis results in reduced pain and improved function: a prospective controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examined the effect of treatment with a novel biomechanical device on the level of pain and function in patients with knee OA.</p> <p>Methods</p> <p>Patients with bilateral knee OA were enrolled to active and control groups. Patients were evaluated at baseline, at 4 weeks and at the 8-week endpoint. A novel biomechanical device was individually calibrated to patients from the active group. Patients from the control group received an identical foot-worn platform without the biomechanical elements. Primary outcomes were the WOMAC Index and ALF assessments.</p> <p>Results</p> <p>There were no baseline differences between the groups. At 8 weeks, the active group showed a mean improvement of 64.8% on the WOMAC pain scale, a mean improvement of 62.7% on the WOMAC function scale, and a mean improvement of 31.4% on the ALF scale. The control group demonstrated no improvement in the above parameters. Significant differences were found between the active and control groups in all the parameters of assessment.</p> <p>Conclusions</p> <p>The biomechanical device and treatment methodology is effective in significantly reducing pain and improving function in knee OA patients.</p> <p>The study is registered at clinicaltrials.gov, identifier NCT00457132, <url>http://www.clinicaltrials.gov/ct/show/NCT00457132?order=1</url></p

    Proprioception deficiency in articular cartilage lesions of the knee

    Get PDF
    Purpose: The purpose of this study is to investigate the proprioceptive function of patients with isolated articular cartilage lesions of the knee as compared to normal controls. Methods: The Cartilage group consisted of eight subjects with radiologically and arthroscopically confirmed, isolated, unilateral, articular cartilage lesions of the knee (Outerbridge grade III or IV). They were compared to 50 normal controls. Knee proprioception was assessed by dynamic postural stabilometry using the Biodex Balance SD System. Patient-reported outcome measures (PROMs) were used to evaluate all subjects. Results: Proprioception of the injured knee of the Cartilage group was significantly poorer compared to that of the control group (p < 0.001). A significant proprioceptive deficit also was observed when the uninjured knees of the Cartilage group were compared to those in the Control group (p = 0.003). There was no significant proprioceptive difference between the injured and the contra-lateral uninjured knee of the Cartilage group (p = 0.116). A significant correlation was found between the proprioception measurements of the injured and uninjured knee of the Cartilage group (r = 0.76, p = 0.030). A significant difference was observed in all PROMs (p < 0.001) between the Cartilage and Control groups. Conclusions: Patients with isolated articular cartilage lesions of the knee had a significant proprioceptive deficit as compared to normal controls. The deficiency was profound and even affected the proprioceptive function of the contra-lateral uninjured knee. This study has shown that articular cartilage lesions have a major influence on knee proprioception. However, it remains uncertain as to whether a proprioceptive deficit leads to osteoarthritis or is a consequence of it

    The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review

    Get PDF
    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors

    Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes.</p> <p>Methods</p> <p>Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program.</p> <p>Results</p> <p>After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p < 0.01). The absolute change during landing in knee flexion for the Post-training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p < 0.001). Tibial rotation and the knee varus/valgus angle were not significantly different after training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p < 0.05).</p> <p>Conclusions</p> <p>The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.</p
    • …
    corecore