468 research outputs found

    Design and implementation of synchrotron radiation masks for LEP2

    Get PDF
    Estimates of photon flux for LEP2 have predicted unacceptable background levels within the detectors of the four LEP experiments. As part of the solution to this problem, synchrotron radiation masks have been installed within the experimental vacuum Chambers close to the interaction points. The photon flux calculations and specification for the masks have been laid-out by von Holtey et.al. [1]. This paper describes the design of the masks and outlines the principal technical issues overcome for their installation and alignment

    Mechanical and Vacuum Stability Design Criteria for the LHC Experimental Vacuum Chambers

    Get PDF
    Four colliding beam experiments are planned for the Large Hadron Collider (LHC) requiring experimental vacuum chambers in the interaction region. The beam pipe should be as transparent as possible to scattered particles and detectors should be as close as possible to the interaction point, resulting in small diameter beam pipes. This, together with the bunched beam structure, makes ion induced pre ssure bump instability, well known from the Intersecting Storage Rings (ISR) at CERN, a potential problem. Adequate conductance, cleanliness of the beam pipes and efficient pumping are required to avo id this instability. Suppression of electron multipacting requires appropriate surface coatings and cleaning procedures. Small beam pipe diameters must provide the required beam stay clear and still a llow margin for alignment and stability inside detectors. Design criteria to ensure both local and global stability under static and dynamic mechanical loads are defined

    Installation and commissioning of vacuum systems for the LHC particle detectors

    Get PDF
    The LHC collider has recently completed commissioning at CERN. At four points around the 27 km ring, the beams are put into collision in the centre of the experiments ALICE, ATLAS, CMS and LHCb which are installed in large underground caverns. The ‘experimental vacuum systems’ which transport the beams through these caverns and collision points are a primary interface between machine and experiment and were developed and installed as one project at CERN. Each system has a different geometry and materials as required by the experiment. However, they all have common requirements from the machine, and use many common technologies developed for the project. In this paper we give an overview of the four systems. We explain the technologies that were developed and applied for the installation, test, bakeout and subsequent closure of the experimental vacuum systems. We also discuss lessons learnt from the project

    Vacuum Calculations for the LHC Experimental Beam Chambers

    Get PDF
    The vacuum stability is studied for the LHC experimental beam vacuum chambers of ALICE, ATLAS, and CMS. The present baseline design includes sputtered Non-Evaporable Getter (NEG) coating over the whole chamber inner surface providing distributed pumping and an antimultipactor coating. The data are presented for the dominant gas species (H2, CH4, CO and CO2) in a baked system. It results that the distributed pumping is necessary for vacuum stability of CO. Lumped pumping with Sputter Ion Pumps (SIP) is also indispensable for the stability of CH4. The operational constraints with NEG technology are described

    Survival Analysis to Estimate Association between Short-Term Mortality and Air Pollution

    Get PDF
    BACKGROUND: Ecologic studies are commonly used to report associations between short-term air pollution and mortality. In such studies, the unit of observation is the day rather than the individual. Moreover, individual data on the subjects are rarely available, which limits the assessment of individual risk factors. These associations can also be investigated using case–crossover studies. However, by definition, individual risk factors are not studied, and such studies analyze only dead subjects, which limits the statistical power. OBJECTIVE: We suggest that the survival analysis is more suitable when cohorts are examined with a time-dependent ecologic exposure. To our knowledge, to date this type of analysis has never been proposed. DESIGN, PARTICIPANTS, MEASUREMENTS: In the present study we used a Cox proportional hazards model to investigate the distribution over time of the short-term effect of black smoke and sulfur dioxide in 439 nonaccidental and 158 cardiorespiratory deaths among the 1,469 subjects of the Personnes AgĂ©es QUID (PAQUID) cohort in Bordeaux, France. The model has a delayed entry and a polynomial distributed lag from 0 to 5 days. Results are adjusted for individual risk factors, temperature, relative humidity, weekday, season, influenza epidemics, and a time function to control temporal trends. RESULTS: We identified a positive and significant association between cardiorespiratory mortality and black smoke, with a 24% increase in deaths 3 days after a 10-ÎŒg/m(3) increase in black smoke (95% confidence interval, 4–47%). CONCLUSIONS: We conclude that the Cox proportional hazards model with time-dependent covariates is very suitable to investigate simultaneously the short-term effect of air pollution on health and the effect of individual risk factors on a cohort study

    Design Aspects of the RF Contacts for the LHC Beam Vacuum Interconnects

    Get PDF
    The LHC requires a very low longitudinal and transverse beam coupling impedance, in particular at low frequencies. This implies an admissible DC contact resistance of less than 0.1 mΩ\Omega for the RF contacts inside the vacuum bellows which must carry the image current (up to 50 A peak) of the beam at each vacuum chamber interconnect. Technological aspects, measurement methods and test results are presented for the contacts which will be used in the LHC. The modified mechanical design and the justifications for specific choices will be discusse

    Beam Vacuum Interconnects for the LHC Cold Arcs

    Get PDF
    The design of the beam vacuum interconnect is described in this paper. Features include a novel RF bridge design to maximise lateral flexibility during cryostat Cold arcs of the LHC will consist of twin aperture dipole, quadrupole and corrector magnets in cryostats, operating at 1.9 K. Beam vacuum chambers, along with all connecting elements require flexible 'interconnects' between adjacent cryostats to allow for thermal and mechanical offsets foreseen during machine operation and alignment. In addition, the beam vacuum chambers contain perforated beam screens to intercept beam induced heat loads at an intermediate temperature. These must also be connected with low impedance RF bridges in the interconnect zones.alignment and so-called 'nested' bellows to minimise the required length of the assembly
    • 

    corecore