7 research outputs found

    On the Accessibility and Controllability of Statistical Linearization for Stochastic Control: Algebraic Rank Conditions and their Genericity

    Full text link
    Statistical linearization has recently seen a particular surge of interest as a numerically cheap method for robust control of stochastic differential equations. Although it has already been successfully applied to control complex stochastic systems, accessibility and controllability properties of statistical linearization, which are key to make the robust control problem well-posed, have not been investigated yet. In this paper, we bridge this gap by providing sufficient conditions for the accessibility and controllability of statistical linearization. Specifically, we establish simple sufficient algebraic conditions for the accessibility and controllability of statistical linearization, which involve the rank of the Lie algebra generated by the drift only. In addition, we show these latter algebraic conditions are essentially sharp, by means of a counterexample, and that they are generic with respect to the drift and the initial condition.Comment: 23 page

    Structure of optimal control for planetary landing with control and state constraints

    No full text
    This paper studies a vertical powered descent problem in the context of planetary landing, considering glide-slope and thrust pointing constraints and minimizing any final cost. In a first time, it proves the Max-Min-Max or Max-Singular-Max form of the optimal control using the Pontryagin Maximum Principle, and it extends this result to a problem formulation considering the effect of an atmosphere. It also shows that the singular structure does not appear in generic cases. In a second time, it theoretically analyzes the optimal trajectory for a more specific problem formulation to show that there can be at most one contact or boundary interval with the state constraint on each Max or Min arc

    On the Accessibility and Controllability of Statistical Linearization for Stochastic Control: Algebraic Rank Conditions and their Genericity

    No full text
    23 pagesStatistical linearization has recently seen a particular surge of interest as a numerically cheap method for robust control of stochastic differential equations. Although it has already been successfully applied to control complex stochastic systems, accessibility and controllability properties of statistical linearization, which are key to make the robust control problem well-posed, have not been investigated yet. In this paper, we bridge this gap by providing sufficient conditions for the accessibility and controllability of statistical linearization. Specifically, we establish simple sufficient algebraic conditions for the accessibility and controllability of statistical linearization, which involve the rank of the Lie algebra generated by the drift only. In addition, we show these latter algebraic conditions are essentially sharp, by means of a counterexample, and that they are generic with respect to the drift and the initial condition

    On the Accessibility and Controllability of Statistical Linearization for Stochastic Control: Algebraic Rank Conditions and their Genericity

    No full text
    23 pagesStatistical linearization has recently seen a particular surge of interest as a numerically cheap method for robust control of stochastic differential equations. Although it has already been successfully applied to control complex stochastic systems, accessibility and controllability properties of statistical linearization, which are key to make the robust control problem well-posed, have not been investigated yet. In this paper, we bridge this gap by providing sufficient conditions for the accessibility and controllability of statistical linearization. Specifically, we establish simple sufficient algebraic conditions for the accessibility and controllability of statistical linearization, which involve the rank of the Lie algebra generated by the drift only. In addition, we show these latter algebraic conditions are essentially sharp, by means of a counterexample, and that they are generic with respect to the drift and the initial condition

    Statistical Linearization for Robust Motion Planning

    No full text
    The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments
    corecore