1,985 research outputs found

    Improved Nonrelativistic QCD for Heavy Quark Physics

    Get PDF
    We construct an improved version of nonrelativistic QCD for use in lattice simulations of heavy quark physics, with the goal of reducing systematic errors from all sources to below 10\%. We develop power counting rules to assess the importance of the various operators in the action and compute all leading order corrections required by relativity and finite lattice spacing. We discuss radiative corrections to tree level coupling constants, presenting a procedure that effectively resums the largest such corrections to all orders in perturbation theory. Finally, we comment on the size of nonperturbative contributions to the coupling constants.Comment: 40 pages, 2 figures (not included), in LaTe

    The B_s and D_s decay constants in 3 flavor lattice QCD

    Get PDF
    Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f_{B_s} and f_{D_s} that includes effects of one strange sea quark and two light sea quarks. The discretization errors of improved staggered fermion actions are small enough to simulate with 3 dynamical flavors on lattices with spacings around 0.1 fm using present computer resources. By shedding the quenched approximation and the associated lattice scale ambiguity, lattice QCD greatly increases its predictive power. NRQCD is used to simulate heavy quarks with masses between 1.5 m_c and m_b. We arrive at the following results: f_{B_s} = 260 \pm 7 \pm 26 \pm 8 \pm 5 MeV and f_{D_s} = 290 \pm 20 \pm 29 \pm 29 \pm 6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.Comment: 4 page

    A quark action for very coarse lattices

    Full text link
    We investigate a tree-level O(a^3)-accurate action, D234c, on coarse lattices. For the improvement terms we use tadpole-improved coefficients, with the tadpole contribution measured by the mean link in Landau gauge. We measure the hadron spectrum for quark masses near that of the strange quark. We find that D234c shows much better rotational invariance than the Sheikholeslami-Wohlert action, and that mean-link tadpole improvement leads to smaller finite-lattice-spacing errors than plaquette tadpole improvement. We obtain accurate ratios of lattice spacings using a convenient ``Galilean quarkonium'' method. We explore the effects of possible O(alpha_s) changes to the improvement coefficients, and find that the two leading coefficients can be independently tuned: hadron masses are most sensitive to the clover coefficient, while hadron dispersion relations are most sensitive to the third derivative coefficient C_3. Preliminary non-perturbative tuning of these coefficients yields values that are consistent with the expected size of perturbative corrections.Comment: 22 pages, LaTe

    High Precision determination of the pi, K, D and D_s decay constants from lattice QCD

    Full text link
    We determine DD and DsD_s decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: fDsf_{D_s} = 241(3) MeV, fDf_D = 207(4) MeV and fDs/fDf_{D_s}/f_D = 1.164(11). We also obtain fK/fπf_K/f_{\pi} = 1.189(7) and (fDs/fD)/(fK/fπ)(f_{D_s}/f_D)/(f_K/f_{\pi}) = 0.979(11). Combining with experiment gives VusV_{us}=0.2262(14) and Vcs/VcdV_{cs}/V_{cd} of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks fixing the u/d,su/d, s and cc masses from the π\pi, KK, and ηc\eta_c meson masses. This allows a stringent test against experiment for DD and DsD_s masses for the first time (to within 7 MeV).Comment: 4 pages, 2 figures. Published version - changes from original include a more extensive discussion of errors and an error budget table covering more quantities. There are very small changes in some of the values reporte

    D→K,lνD \rightarrow K, l \nu Semileptonic Decay Scalar Form Factor and ∣Vcs∣|V_{cs}| from Lattice QCD

    Full text link
    We present a new study of D semileptonic decays on the lattice which employs the Highly Improved Staggered Quark (HISQ) action for both the charm and the light valence quarks. We work with MILC unquenched Nf=2+1N_f = 2 + 1 lattices and determine the scalar form factor f0(q2)f_0(q^2) for D→K,lνD \rightarrow K, l \nu semileptonic decays. The form factor is obtained from a scalar current matrix element that does not require any operator matching. We develop a new approach to carrying out chiral/continuum extrapolations of f0(q2)f_0(q^2). The method uses the kinematic "zz" variable instead of q2q^2 or the kaon energy EKE_K and is applicable over the entire physical q2q^2 range. We find f0D→K(0)≡f+D→K(0)=0.747(19)f^{D \rightarrow K}_0(0) \equiv f^{D \rightarrow K}_+(0) = 0.747(19) in the chiral plus continuum limit and hereby improve the theory error on this quantity by a factor of ∼\sim4 compared to previous lattice determinations. Combining the new theory result with recent experimental measurements of the product f+D→K(0)∗∣Vcs∣f^{D \rightarrow K}_+(0) * |V_{cs}| from BaBar and CLEO-c leads to the most precise direct determination of the CKM matrix element ∣Vcs∣|V_{cs}| to date, ∣Vcs∣=0.961(11)(24)|V_{cs}| = 0.961(11)(24), where the first error comes from experiment and the second is the lattice QCD theory error. We calculate the ratio f+D→K(0)/fDsf^{D \rightarrow K}_+(0)/f_{D_s} and find 2.986±0.0872.986 \pm 0.087 GeV−1^{-1} and show that this agrees with experiment.Comment: 23 pages, 31 figures, 11 tables. Added a paragraph in sction VII, and updated with PDG 2010 instead of PDG 200

    Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD

    Full text link
    The spectrum of the Upsilon system is investigated using the Nonrelativistic Lattice QCD approach to heavy quarks and ignoring light quark vacuum polarization. We find good agreement with experiment for the Upsilon(1S), Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the chi_b states. The lattice calculations predict b-bbar D-states with center of mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting both ground and excited state energies are developed. We calculate a nonperturbative dispersion mass for the Upsilon(1S) and compare with tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00

    Update: Accurate Determinations of alpha_s from Realistic Lattice QCD

    Full text link
    We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table

    Notas sobre coccideos do Brasil (com descrição de espécie nova) (Homoptera-Coccoidea)

    Get PDF

    First study of B→πB \to \pi semileptonic decay form factors using NRQCD

    Full text link
    We present a quenched calculation of the form factors of the semileptonic weak decay B→πlνˉB \to \pi l \bar{\nu} with O(1/mQ)O(1/m_Q) NRQCD heavy quark and Wilson light quark on a 163×3216^3 \times 32 lattice at β=5.8\beta=5.8. The form factors are evaluated at six heavy quark masses, in the range of mQ∼1.5−8m_Q \sim 1.5-8 GeV. 1/mQ1/m_Q dependence of matrix elements are investigated and compared with HQET predictions. We observe clear signal for the form factors near qmax2q^2_{max}, even at the bb-quark mass range. f0(qmax2)f^0(q^2_{max}) is compared with fB/fπf_B/f_{\pi} based on the soft pion theorem and significant difference is observed.Comment: 3 pages, 5 ps figures, uses espcrc2.sty and epsf.sty, Talk presented at Lattice'9
    • …
    corecore