35 research outputs found

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues

    Effects of Cyclic Strain and Growth Factors on Vascular Smooth Muscle Cell Responses

    Get PDF
    Under physiological and pathological conditions, vascular smooth muscle cells (SMC) are exposed to different biochemical factors and biomechanical forces. Previous studies pertaining to SMC responses have not investigated the effects of both factors on SMCs. Thus, in our research we investigated the combined effects of growth factors like Bfgf (basic fibroblast growth factor), TGF-β (transforming growth factor β) and PDGF (platelet-derived growth factor) along with physiological cyclic strain on SMC responses. Physiological cyclic strain (10% strain) significantly reduced SMC proliferation compared to static controls while addition of growth factors bFGF, TGF-β or PDGF-AB had a positive influence on SMC growth compared to strain alone. Microarray analysis of SMCs exposed to these growth factors and cyclic strain showed that several bioactive genes (vascular endothelial growth factor, epidermal growth factor receptor, etc.) were altered upon exposure. Further work involving biochemical and pathological cyclic strain stimulation will help us better understand the role of cyclic strain and growth factors in vascular functions and development of vascular disorders

    Current state in scientific publishing: AOA critical issues symposium

    Get PDF
    Orthopaedic surgery has a rich history of publication of the science that supports the practice of our specialty, which dates from 1887. Orthopaedic publishing has evolved since that time, expanding from print to online access, with increasing variation in publication models, including open-access journals and article repositories, and methods of information delivery that include video, data archives, and commentary. This symposium provides an overview of the changes and challenges in the publication of orthopaedic science

    Editorial: Let’s Talk About Level IV: The Bones of a Good Retrospective Case Series

    No full text

    Editorial: Our Love Affair with Technology and the Choices We Make

    No full text

    Erratum to: Gustilo-Anderson Classification

    No full text
    corecore