3,679 research outputs found

    Distance-dependent Electron Hopping Conductivity and Nanoscale Lithography of Chemically-linked Gold Monolayer Protected Cluster Films

    Get PDF
    Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and ω-carboxylate alkanethiolate monolayers, linked together by carboxylate–Cu2+–carboxylate bridges, exhibit average edge-to-edge cluster spacings that vary with the numbers of methylene segments in the alkanethiolate ligand as determined by a combined atomic force microscopy (AFM)/UV-Vis spectroscopy method. The electronic conductivity (σEL) of dry films is exponentially dependent on the cluster spacing, consistent with electron tunneling through the alkanethiolate chains and non-bonded contacts between those chains on individual, adjacent MPCs. The calculated electronic coupling factor (β) for tunneling between MPCs is 1.2 Å−1, which is similar to other values obtained for tunneling through hydrocarbon chains. Electron transfer rate constants measured on the films reflect the increased cluster–cluster tunneling distance with increasing chainlength. The MPC films are patterned by scanning the surface with an AFM or scanning tunneling microscopy (STM) tip under appropriate conditions. The patterning mechanism is physical in nature, where the tip scrapes away the film in the scanned region. Large forces are required to pattern films with AFM while normal imaging conditions are sufficient to produce patterns with STM. Patterns with dimensions as small as 100 nm are shown. Subsequent heating (300 °C) of the patterned surfaces leads to a metallic Au film that decreases in thickness and is smoother compared to the MPC film, but retains the initial shape and dimensions of the original pattern

    Bistable Gradient Networks II: Storage Capacity and Behaviour Near Saturation

    Full text link
    We examine numerically the storage capacity and the behaviour near saturation of an attractor neural network consisting of bistable elements with an adjustable coupling strength, the Bistable Gradient Network (BGN). For strong coupling, we find evidence of a first-order "memory blackout" phase transition as in the Hopfield network. For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect retrieval of the patterns from corrupted versions.Comment: 15 pages, 12 eps figures. Submitted to Phys. Rev. E. Sequel to cond-mat/020356

    Plant roots steer resilience to perturbation of river floodplains

    Get PDF
    Freshwater ecosystems along river floodplains host among the greatest biodiversity on Earth and are known to respond to anthropic pressure. For water impounded systems, resilience to changes in the natural flow regime is believed to be bi-directional. Whether such resilience prevents the system from returning to pristine conditions after the flow regime changes reverse is as yet unclear, though widely documented. In this work we show that temporal irreversibility of river floodplains to recover their status may be explained by the dynamics of riparian water-tolerant plant roots. Our model is a quantitative tool that will benefit scientists and practitioners in predicting the impact of changing flow regimes on long-term river floodplain dynamics

    The effect of parallel static and microwave electric fields on excited hydrogen atoms

    Get PDF
    Motivated by recent experiments we analyse the classical dynamics of a hydrogen atom in parallel static and microwave electric fields. Using an appropriate representation and averaging approximations we show that resonant ionisation is controlled by a separatrix, and provide necessary conditions for a dynamical resonance to affect the ionisation probability. The position of the dynamical resonance is computed using a high-order perturbation series, and estimate its radius of convergence. We show that the position of the dynamical resonance does not coincide precisely with the ionisation maxima, and that the field switch-on time can dramatically affect the ionisation signal which, for long switch times, reflects the shape of an incipient homoclinic. Similarly, the resonance ionisation time can reflect the time-scale of the separatrix motion, which is therefore longer than conventional static field Stark ionisation. We explain why these effects should be observed in the quantum dynamics. PACs: 32.80.Rm, 33.40.+f, 34.10.+x, 05.45.Ac, 05.45.MtComment: 47 pages, 20 figure

    Growth, Conductivity, and Vapor Response Properties of Metal Ion-Carboxylate linked Nanoparticle Films

    Get PDF
    Nanoparticles of metals (Au, Ag, Pd, alloys) in the size range 1–3 nm diameter can be stabilized against aggregation of the metal particles by coating the metal surface with a dense monolayer of ligands (thiolates). The stabilization makes it possible to analytically define the nanoparticle composition (for example, Au140(hexanethiolate)53, I) and to elaborate the chemical functionality of the protecting monolayer (for example, Au140(C6)35(MUA)18, II, where C6 = hexanethiolate and MUA = mercaptoundecanoic acid). Network polymer films (IIfilm) on interdigitated array electrodes can be prepared from II, based on cation coordination (i.e., Cu2+, Zn2+, Ag+, methyl viologen) by the carboxylates of MUA. The electronic conductivity of the IIfilm network polymer films occurs by electron hopping between the Au140 nanoparticle cores, and offers an avenue for investigation of metal-to-metal nanoparticle electron transfer chemistry. The report begins with a brief summary of what is known about metal nanoparticle electron transfer chemistry. The investigation goes on to assess factors that influence the dynamics of film formation as well as film conductivity, in the interest of better understanding the parameters affecting electron hopping rates in IIfilm network polymer films. Finally, sorption of organic vapors into IIfilm causes a decreased electronic conductivity and increased mass that can be assessed using quartz crystal microbalance measurements. The change in electronic conductivity can be exploited for the sensing of organic vapors

    Exploring the origins of the power-law properties of energy landscapes: An egg-box model

    Full text link
    Multidimensional potential energy landscapes (PELs) have a Gaussian distribution for the energies of the minima, but at the same time the distribution of the hyperareas for the basins of attraction surrounding the minima follows a power-law. To explore how both these features can simultaneously be true, we introduce an ``egg-box'' model. In these model landscapes, the Gaussian energy distribution is used as a starting point and we examine whether a power-law basin area distribution can arise as a natural consequence through the swallowing up of higher-energy minima by larger low-energy basins when the variance of this Gaussian is increased sufficiently. Although the basin area distribution is substantially broadened by this process,it is insufficient to generate power-laws, highlighting the role played by the inhomogeneous distribution of basins in configuration space for actual PELs.Comment: 7 pages, 8 figure

    Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles

    Get PDF
    Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and ω-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (σEL) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film\u27s internal structure is shown to account for changes in σEL. The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The σEL results concur with the behavior of UV−vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR
    • …
    corecore