31 research outputs found

    Dietary fat and carbohydrate modulate the effect of the ATP-binding cassette A1 (ABCA1) R230C variant on metabolic risk parameters in premenopausal women from the Genetics of Atherosclerotic Disease (GEA) Study

    Get PDF
    Table S1. Demographic characteristics of the population. Table S2. Comparison of biochemical parameters stratified by gender and menopausal status. Table 3. Correlation between metabolic parameters and dietary macronutrients according to ABCA1/R230C genotypes in premenopausal women. Table S4. Comparison of biochemical parameters stratified by ABCA1/R230C genotypes in the study population and premenopausal women. Table 5. Comparison of biochemical parameters stratified by ABCA1/R230C genotypes and carbohydrate percentage tertiles in premenopausal women. Table 6. Comparison of biochemical parameters stratified by ABCA1/R230C genotypes and fat percentage tertiles in premenopausal women. (DOCX 162 kb

    The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease

    No full text
    Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression

    The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease

    No full text
    Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression

    Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches

    No full text
    Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications

    Clinical Spectrum of SCN5A Channelopathy in Children with Primary Electrical Disease and Structurally Normal Hearts

    No full text
    Sodium voltage-gated channel α subunit 5 (SCN5A)-mutations may cause an array of arrhythmogenic syndromes most frequently as an autosomal dominant trait, with incomplete penetrance, variable expressivity and male predominance. In the present study, we retrospectively describe a group of Mexican patients with SCN5A-disease causing variants in whom the onset of symptoms occurred in the pediatric age range. The study included 17 patients with clinical diagnosis of primary electrical disease, at least one SCN5A pathogenic or likely pathogenic mutation and age of onset <18 years, and all available first- and second-degree relatives. Fifteen patients (88.2%) were male, and sixteen independent variants were found (twelve missense, three truncating and one complex inframe deletion/insertion). The frequency of compound heterozygosity was remarkably high (3/17, 17.6%), with early childhood onset and severe disease. Overall, 70.6% of pediatric patients presented with overlap syndrome, 11.8% with isolated sick sinus syndrome, 11.8% with isolated Brugada syndrome (BrS) and 5.9% with isolated type 3 long QT syndrome (LQTS). A total of 24/45 SCN5A mutation carriers were affected (overall penetrance 53.3%), and penetrance was higher in males (63.3%, 19 affected/30 mutation carriers) than in females (33.3%, 5 affected/15 carriers). In conclusion, pediatric patients with SCNA-disease causing variants presented mainly as overlap syndrome, with predominant loss-of-function phenotypes of sick sinus syndrome (SSS), progressive cardiac conduction disease (PCCD) and ventricular arrhythmias

    A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data

    No full text
    Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments

    Genetic contributors to serum uric acid levels in Mexicans and their effect on premature coronary artery disease

    No full text
    © 2018 Elsevier B.V.Background: Serum uric acid (SUA) is a heritable trait associated with cardiovascular risk factors and coronary artery disease (CAD). Genome wide association studies (GWAS) have identified several genes associated with SUA, mainly in European populations. However, to date there are few GWAS in Latino populations, and the role of SUA-associated single nucleotide polymorphisms (SNPs) in cardiovascular disease has not been studied in the Mexican population. Methods: We performed genome-wide SUA association study in 2153 Mexican children and adults, evaluated whether genetic effects were modified by sex and obesity, and used a Mendelian randomization approach in an independent cohort to study the role of SUA modifying genetic variants in premature CAD. Results: Only two loci were associated with SUA levels: SLC2A9 (ÎČ = −0.47 mg/dl, P = 1.57 × 10−42 for lead SNP rs7678287) and ABCG2 (ÎČ = 0.23 mg/dl, P = 2.42 × 10−10 for lead SNP rs2231142). No significant interaction be
    corecore