29 research outputs found

    Biosurfactants as Multifunctional Remediation Agents of Environmental Pollutants Generated by the Petroleum Industry

    Get PDF
    Fuel and oil spills during the exploration, refining, and distribution of oil and petrochemicals are primarily responsible for the accumulation of organic pollutants in the environment. The reduction in contamination caused by hydrocarbons, heavy metals, oily effluents, and particulate matter generated by industrial activities and the efficient recovery of oil at great depths in an environmentally friendly way pose a challenge, as recovery and cleaning processes require the direct application of surface-active agents, detergents, degreasers, or solvents, often generating other environmental problems due to the toxicity and accumulation of these substances. Thus, the application of natural surface-active agents is an attractive solution. Due to their amphipathic structures, microbial surfactants solubilize oil through the formation of small aggregates (micelles) that disperse in water, with numerous applications in the petroleum industry. Biosurfactants have proven their usefulness in solubilizing oil trapped in rock, which is a prerequisite for enhanced oil recovery (EOR). Biosurfactants are also important biotechnological agents in anti-corrosion processes, preventing incrustations and the formation of biofilms on metallic surfaces, and are used in formulations of emulsifiers/demulsifiers, facilitate the transport of heavy oil through pipelines, and have other innovative applications in the oil industry. The use of natural surfactants can reduce the generation of pollutants from the use of synthetic detergents or chemical solvents without sacrificing economic gains for the oil industry. Therefore, investments in biotechnological processes are essential. It is predicted that, in the not-too-distant future, natural surfactants will become viable from an economic standpoint and dominate the world market. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability. The main goal of this paper is to provide an overview of diverse applications of biosurfactants on environmental remediation, petroleum biotechnology, and the oil industry through a scientific literature review

    Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995

    Get PDF
    Abstract Different groups of biosurfactants exhibit diverse properties and display a variety of physiological functions in producer microorganisms; these include enhancing the solubility of hydrophobic/water-insoluble compound, heave metal binding, bacterial pathogenesis, cell adhesion and aggregation, quorum sensing and biofilm formation. Candida sphaerica was grown in a low cost medium, consisting of distilled water supplemented with 9% refinery residue of soybean oil and 9% corn steep liquor, for 144 h at 28°C and 150 rpm. The cell-free supernatant obtained at the end of the experiments was submitted to extraction, and afterward the biosurfactant was isolated using methanol with a yield of 9 g l -1 . The critical micelle concentration of the biosurfactant was found to be 0.25 mg ml -1 with a surface tension of 25 mN m -1 . Several concentrations of the biosurfactant (0.625-10 mg ml -1 ) were used to evaluate its antimicrobial and antiadhesive activities against a variety of microorganisms. The biosurfactant showed antimicrobial activity against Streptococcus oralis (68%), Candida albicans (57%), and Staphylococcus epidermidis(57.6%) for the highest concentration tested. Furthermore, the biosurfactant at a concentration of 10 mg ml -1 inhibited the adhesion between 80 and 92% of Pseudomonas aeruginosa, Streptococcus agalactiae, Streptococcus sanguis12. Inhibition of adhesion with percentages near 100% occurred for the higher concentrations of biosurfactant used. Results gathered in this study point to a potential use of the biosurfactant in biomedical applications

    Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand

    Get PDF
    Background: This study investigated the potential application of two biosurfactants for enhanced removal capability and biodegradation of motor oil contaminated sand under laboratory conditions. The biosurfactants were produced by the yeast Candida sphaerica and by the bacterium Bacillus sp. cultivated in low-cost substrates. The ability of removing motor oil from soil by the two biosurfactants was identified and compared with that of the synthetic surfactants Tween 80 and Triton X-100. Results: Both crude and isolated biosurfactants showed excellent effectiveness on motor oil removal from contaminated sand under kinetic conditions (70\u201390%), while the synthetic surfactants removed between 55 and 80% of the oil. A contact time of 5\u201310 min under agitation seemed to be enough for oil removal with the biosurfactants and synthetic surfactants tested. The crude and the isolated biosurfactant from C. sphaerica were able to remove high percentages of motor oil from packed columns (around 90%) when compared to the biosurfactant from Bacillus sp. (40%). For the degradation experiments conducted in motor oil contaminated sand enriched with sugar cane molasses, however, oil degradation reached almost 100% after 90 d in the presence of Bacillus sp. cells, while the percentage of oil degradation did not exceed 50% in the presence of C. sphaerica. The presence of the biosurfactants increased the degradation rate in 10\u201320%, especially during the first 45 d, indicating that biosurfactants acted as efficient enhancers for hydrocarbon biodegradation. Conclusions: The results indicated the biosurfactants enhancing capability on both removal and rate of motor oil biodegradation in soil systems

    Evaluation of the Stability of a Biodetergent for Industrial Use

    Get PDF
    In the industrial setting, it is common to use toxic oils and petroderivates, which are difficult to remove. For the cleaning of machines, equipment, and other surfaces impregnated with these oils, industries use products with high cost and that, many times, are also toxic and harmful to the health of workers and the environment. In this context, natural detergents/degreasers, formulated from renewable/sustainable sources, have been developed. Therefore, this work aimed to optimize the visual and stability characteristics of a non-toxic biodetergent in the face of large-scale production. In this sense, was avaluated the variation in the concentration of the stabilizing gum (0.7, 0.8, and 1.0 1.5%), one of the main components of the formulation and the agitation times (10, 15, 20 and 25 minutes). The volume of batchs was 250 liters in an industrial homogenizer tank with agitation of 3500 rpm at 80 °C

    Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    No full text
    Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values obtained for the Young’s modulus in the mechanical tests in the hydrated samples indicated low values for the variable rigidity. The presence of water in the interior and between the nanofibers of the hydrated BC only favored the results for the elasticity, which was 56.37% higher when compared to the dry biomaterial

    Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater

    No full text
    The aim of the present study was to produce biosurfactants using three bacterial strains (Pseudomonas cepacia CCT6659, Bacillus methylotrophicus UCP 1616 and Bacillus cereus UCP 1615) cultivated in mineral medium containing different carbon (glucose, sucrose, molasses and waste frying oil) and nitrogen [NH4NO3, (NH4)2SO4, peptone, yeast extract and corn steep liquor] sources. B. cereus stood out as the best biosurfactant producer when inoculated with a 1.5% cell suspension and cultivated at 28\u2009\ub0C and 200\u2009rpm in 2.0% molasses and 1.0% corn steep liquor for 48\u2009h. Under these conditions, medium surface tension was reduced to 26.2\u2009\ub1\u20090.2\u2009mN/m, and biosurfactant concentration achieved 2.05\u2009\ub1\u20090.32\u2009g/L. The biosurfactant showed a critical micelle concentration of 0.90\u2009\ub1\u20090.05\u2009g/L, proved to be highly stable in wide ranges of pH, salt concentration and heating temperature, and exerted low toxicity to larvae of Artemia salina as a marine environmental bioindicator. Structural characterisation of biosurfactant suggested a lipopeptide composition. The biotensioactive agent was shown to effectively remove motor oil adsorbed to marine rock (91.0\u2009\ub1\u20090.4%) and to disperse it in seawater (70.0\u2009\ub1\u20090.4%). The biosurfactant formulated with 0.2% potassium sorbate demonstrated considerable potential for application in the petroleum industry, where it could be successfully used as a commercial product to mobilize oil in marine environments

    Biosurfactants: Promising Biomolecules for Agricultural Applications

    Get PDF
    Population growth and the need for increased agricultural productivity pose a global problem. Therefore, the development of green compounds to ensure agricultural sustainability is an urgent necessity. Surfactant compounds hold significant commercial importance due to their diverse industrial uses. However, the synthetic origin of these agents limits their commercial application due to their toxicity. As a result, extensive research has focused on the production of microbial-originated green surfactants, known as biosurfactants, over the past fifteen years. These biomolecules not only offer a green alternative for agriculture but also exhibit reduced toxicity and excellent stability under specific environmental conditions. Biosurfactants can lower surface tension more effectively than synthetic surfactants. With properties such as detergency and foam formation, biosurfactants are suitable for various agricultural applications, particularly in pesticide and agrochemical formulations. They can function as biopesticides to manage pests, pathogens, phytopathogenic fungi, and weeds due to their antimicrobial activity. Moreover, plants can benefit from biosurfactant molecules and microorganisms as nutrients. They can also aid efficiently in the distribution of micronutrients and metals in the soil. They also stimulate plant immunity and are utilized for soil hydrophilization to ensure proper moisture levels and uniform fertilizer distribution. This review aims to provide valuable insights into the role and properties of biosurfactants as agricultural adjuvants, fostering the development of sustainable formulations to replace the chemical surfactants used in pesticides. For this purpose, the general aspects of global agricultural activity are initially described, followed by a discussion of pesticides, including herbicides, fungicides, and insecticide products. Next, the properties of chemical surfactants are discussed and the use of green surfactants, with emphasis on microbial biosurfactants, is demonstrated. The application of biosurfactants in the agricultural industry and trends are addressed and prospects for the application of these agents are discussed

    Biosurfactants: Multifunctional Biomolecules of the 21st Century

    No full text
    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries
    corecore