381 research outputs found
Logic Meets Algebra: the Case of Regular Languages
The study of finite automata and regular languages is a privileged meeting
point of algebra and logic. Since the work of Buchi, regular languages have
been classified according to their descriptive complexity, i.e. the type of
logical formalism required to define them. The algebraic point of view on
automata is an essential complement of this classification: by providing
alternative, algebraic characterizations for the classes, it often yields the
only opportunity for the design of algorithms that decide expressibility in
some logical fragment.
We survey the existing results relating the expressibility of regular
languages in logical fragments of MSO[S] with algebraic properties of their
minimal automata. In particular, we show that many of the best known results in
this area share the same underlying mechanics and rely on a very strong
relation between logical substitutions and block-products of pseudovarieties of
monoid. We also explain the impact of these connections on circuit complexity
theory.Comment: 37 page
On Incomplete XML Documents with Integrity Constraints
Abstract. We consider incomplete specifications of XML documents in the presence of schema information and integrity constraints. We show that integrity constraints such as keys and foreign keys affect consistency of such specifications. We prove that the consistency problem for incomplete specifications with keys and foreign keys can always be solved in NP. We then show a dichotomy result, classifying the complexity of the problem as NP-complete or PTIME, depending on the precise set of features used in incomplete descriptions.
Model-Checking Problems as a Basis for Parameterized Intractability
Most parameterized complexity classes are defined in terms of a parameterized
version of the Boolean satisfiability problem (the so-called weighted
satisfiability problem). For example, Downey and Fellow's W-hierarchy is of
this form. But there are also classes, for example, the A-hierarchy, that are
more naturally characterised in terms of model-checking problems for certain
fragments of first-order logic.
Downey, Fellows, and Regan were the first to establish a connection between
the two formalisms by giving a characterisation of the W-hierarchy in terms of
first-order model-checking problems. We improve their result and then prove a
similar correspondence between weighted satisfiability and model-checking
problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform
characterisations of many of the most important parameterized complexity
classes in both formalisms.
Our results can be used to give new, simple proofs of some of the core
results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update
A Direct Translation from XPath to Nondeterministic Automata
Abstract. Since navigational aspects of XPath correspond to first-order definability, it has been proposed to use the analogy with the very successful technique of translating LTL into automata, and produce efficient translations of XPath queries into automata on unranked trees. These translations can then be used for a variety of reasoning tasks such as XPath consistency, or optimization, under XML schema constraints. In the verification scenarios, translations into both nondeterministic and alternating automata are used. But while a direct translation from XPath into alternating automata is known, only an indirect translation into nondeterministic automata- going via intermediate logics- exists. A direct translation is desirable as most XML specifications have particularly nice translations into nondeterministic automata and it is natural to use such automata to reason about XPath and schemas. The goal of the paper is to produce such a direct translation of XPath into nondeterministic automata.
On Low Treewidth Approximations of Conjunctive Queries
We recently initiated the study of approximations of conjunctive queries within classes that admit tractable query evaluation (with respect to combined complexity). Those include classes of acyclic, bounded treewidth, or bounded hypertreewidth queries. Such approximations are always guaranteed to exist. However, while for acyclic and bounded hypertreewidth queries we have shown a number of examples of interesting approximations, for queries of bounded treewidth the study had been restricted to queries over graphs, where such approximations usually trivialize. In this note we show that for relations of arity greater than two, the notion of low treewidth approximations is a rich one, as many queries possess them. In fact we look at approximations of queries of maximum possible treewidth by queries of minimum possible treewidth (i.e., one), and show that even in this case the structure of approximations remain rather rich as long as input relations are not binary
An Operational Approach to Consistent Query Answering
Consistent query answering (CQA) aims to find meaningful answersto queries when databases are inconsistent, i.e., do not conformto their specifications. Such answers must be certainly true in allrepairs, which are consistent databases whose difference from theinconsistent one is minimal, according to some measure. This taskis often computationally intractable, and much of CQA researchconcentrated on finding islands of tractability. Nevertheless, thereare many relevant queries for which no efficient solutions exist,which is reflected by the limited practical applicability of the CQAapproach. To remedy this, one needs to devise a new CQA framework that provides explicit guarantees on the quality of queryanswers. However, the standard notions of repair and certain answers are too coarse to permit more elaborate schemes of queryanswering. Our goal is to provide a new framework for CQA basedon revised definitions of repairs and query answering that opensup the possibility of efficient approximate query answering withexplicit guarantees. The key idea is to replace the current declarative definition of a repair with anoperationalone, which explainshowa repair is constructed, and how likely it is that a consistentinstance is a repair. This allows us to define how certain we arethat a tuple should be in the answer. Using this approach, we studythe complexity of both exact and approximate CQA. Even thoughsome of the problems remain hard, for many common classes ofconstraints we can provide meaningful answers in reasonable time,for queries going far beyond the standard CQA approach
- …
