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ABSTRACT

Consistent query answering (CQA) aims to find meaningful an-
swers to queries when databases are inconsistent, i.e., do not con-
form to their specifications. Such answers must be certainly true in
all repairs, which are consistent databases whose difference from
the inconsistent one is minimal, according to some measure. This
task is often computationally intractable, and much of CQA re-
search concentrated on finding islands of tractability; but still for
many relevant queries no solutions exist, which is reflected by the
limited practical applicability of the CQA approach. To remedy
this, one needs to devise a new CQA framework that provides ex-
plicit guarantees on the quality of query answers. However, the
standard notions of repair and certain answers are too coarse to
permit more elaborate schemes of query answering.

Our goal is to provide a new framework for CQA based on re-
vised definitions of repairs and query answering that opens up the
possibility of efficient approximate query answering with explicit
guarantees. The key idea is to replace the current declarative def-
inition of a repair with an operational one, which explains how a
repair is constructed, and how likely it is that a consistent instance
is a repair. This lets us define how certain we are that a tuple should
be in the answer. Using this approach, we study the complexity of
both exact and approximate CQA. Even though some of the prob-
lems remain hard, for many common classes of constraints we can
provide meaningful answers in reasonable time, for queries going
far beyond the standard CQA approach.

1. INTRODUCTION

Consistent query answering (CQA) is an elegant idea
introduced in the late 1990s by Arenas, Bertossi, and
Chomicki [1] that has been extensively studied since. The
main premise is that databases are often inconsistent, i.e., do
not conform to their specifications in the form of integrity
constraints. The reason behind this is that data is not perfect
and clean: it may come, for instance, from several conflict-
ing sources. Data cleaning attempts to fix this problem but
it is not always possible and some inconsistencies remain.
In such a case CQA aims to deliver meaningful answers to
queries that can still be obtained from inconsistent data.

The key elements of the CQA approach are [1, 4]:

1. the notion of a repair of an inconsistent database D:
these are consistent databases D′ whose difference
with D is somehow minimal;

2. the notion of query answering based on certain an-
swers: one looks at answers that are true in all repairs.

Since there could be many repairs, finding certain answers
is most commonly CONP in data complexity, and is very
often CONP-hard, even for conjunctive queries [11, 37].
This led to a large body of work on drawing the tractabil-
ity boundary for query answering [18, 19, 20, 26, 27]. Much
of it views a dichotomy result, classifying all query answer-
ing into tractable and CONP-hard, as the ultimate goal of the
CQA endeavor, although there are strong indications that for
some common classes of database integrity constraints ob-
taining such a dichotomy would be extremely hard [17, 33].

But even obtaining good sufficient conditions for tractabil-
ity leaves many relevant queries beyond reach of the CQA
approach. Thus, the standard approach, while yielding good
theoretical results, appears to be a bit of dead end which is
reflected by its limited practical applicability [18, 29]. We
would like to rectify this. We believe that the ultimate goal
of a practically applicable CQA approach should be efficient
approximate query answering with explicitly stated guaran-
tees. However, in the current state of affairs this goal does
not seem to be attainable. Efficient probabilistic algorithms
with bounded one-sided or two-sided error are unlikely for
CQA: placing it in tractable randomized complexity classes
such as RP or BPP would imply that the polynomial hier-
archy collapses [24]. For coming up with more refined ap-
proximation techniques, the current CQA framework lacks
flexibility and finer details related to its key concepts, as we
now explain.

The standard CQA approach simply imposes a condition
that a repair D′ and an inconsistent instance D must sat-
isfy, and then defines query answering by means of certain
answers. This provides little information for two reasons.
First, the notion of repairs does not explain how repairs are
constructed: we know that either an instance is a repair, or
it is not. Nor do we know when, and crucially why, is one
repair more likely to appear than another. Second, the no-
tion of certain answers only says that either a tuple appears
in answers on all repairs, or is missing in some repair. But
the former is too strict and the latter not very useful. Instead
we would like to know how likely a tuple is to be in the an-
swer. However, with few exceptions [21], the standard CQA
approach does not consider this. Thus, we strongly believe
that making progress towards turning CQA into a practically
viable approach requires a different framework for the key
notions of repairs and query answering.

Our main idea is to replace the declarative approach to re-
pairs with an operational one that explains the process of



constructing a repair. As it gives us a finer understanding of
why an instance is a repair, it also leads to more refined ways
of answering queries, by letting us define precisely how cer-
tain we are that a tuple should be in the answer. This ap-
proach offers us a lot more flexibility: for instance, in defin-
ing the operational approach we can also reason about more
or less likely updates that lead to a repair. This in turn lets us
define probabilistic guarantees for query answers, and con-
struct efficient algorithms that produce such guarantees for
common classes of constraints that have previously been be-
yond reach of the CQA approach.

Outline of the operational framework. The key elements
of the new approach to database repairs are:

1. the notion of violations of constraints;

2. repairing sequences of operations on databases;

3. assigning likelihood to repairs based on operations
used in repairing sequences; and

4. flexible query answering based on the likelihood of a
tuple appearing in an answer on different repairs.

A repairing sequence applies operations to a database to
eliminate violations of constraints, and does so until a con-
sistent database is produced. For example, for relational
databases, one may consider sequences of operations insert-
ing and deleting tuples. For a database D and a set Σ of
constraints, a violation of a constraint κ ∈ Σ explains why
D 6|= κ. Very commonly constraints are logical statements
of the form ∀x̄ α(x̄) → β(x̄). Then a violation is given by
a tuple ā such that D |= α(ā) but D 6|= β(ā). These are the
violations we deal with here, but in general there could be
others, for other types of data and/or constraints. We write
V(D,Σ) for the set of all violations of Σ in D.

We now formulate a minimal set of requirements for re-
pairing sequences: these ought to be true in every data model
and for every notion of constraints. A repairing sequence is
a sequence of operations s = op1, op2, . . . , opn. Starting
with a database D, these produce a sequence of databases
D0 = D, D1 = op1(D0), . . . , Di = opi(. . . op1(D) . . .),
etc. The minimal requirements imposed on such repairing
sequences are:

1. each operation must be justified, i.e., remove at least
one violation; and

2. a violation eliminated by opi cannot be reintroduced
later by an operation opj for j > i.

Formally, these are stated as follows:

req1 V(Di−1,Σ)−V(opi(Di−1),Σ) 6= ∅ for every i > 0.

req2 (V(Di−1,Σ)−V(Di,Σ)) ∩V(Dj ,Σ) = ∅ for j > i.

In a specific model of data and updates, these minimal re-
quirements may be supplemented by others. For instance,
for relational databases and insertion/deletion updates, the
same tuple should not belong to both an insertion and a dele-
tion operation of a repairing sequence: it makes no sense to
insert a tuple only to delete it later.

For a sequence s = op1, . . . , opn of operations, its result
s(D) is opn(. . . op1(D) . . .). A repairing sequence attempts

to construct a repair: it may succeed, if s(D) satisfies Σ, or
it may fail, if no further operations can be applied and s(D)
still violates Σ. We view databases s(D) when s succeeds
as our operational repairs.

There is no a priori reason to believe that all such repairs
are equally likely. The idea that not all repairs are created
equal has already been explored in the CQA context [16,
34], but here we take it further. The operational approach
lets us say why one repair is more likely, and also assign a
quantitative measure to such output. For this, all we need is a
measure of likelihood of operations in a given state of repair.
Say we reached some state s(D) by applying a sequence
s = op1, . . . , opn of operations to D. If s(D) is not yet
consistent, there may be several operations op′

1, . . . , op
′
k one

can apply to remove violations. We can assign the notion
of likelihood to those, which in turn leads to the notion of
likelihood of a repair.

This idea is very naturally modeled by tree-shaped Markov
chains [25]. If we assign probabilities p1, . . . , pk to opera-
tions op′

1, . . . , op
′
k that can follow the sequence s so that pi’s

add up to 1, we have a Markov chain on repairing sequences.
Then the probability of a particular successful repairing se-
quence arising in such a Markov chain is given by what is
known as its hitting distribution. This is how we define the
likelihood of a particular repair.

Probabilities can be naturally assigned to repairing opera-
tions in many scenarios leading to inconsistencies. Consider,
for instance, a data integration scenario that results in an in-
tegrated database containing factsR(a, b) andR(a, c) which
violate the constraint that the first attribute of R is a key.
Suppose we have a level of trust in each of the sources sup-
plying data; say we believe that each is 50% reliable. Then
with probability 0.5 · 0.5 = 0.25 we do not trust either tu-
ple and apply the operation that removes both facts. With
probability (1 − 0.25)/2 = 0.375 we remove either R(a, b)
or R(a, c). The standard CQA aproach [1] only allows the
removal of one of the two facts (with equal probability 0.5
in this case). It somehow assumes that we trust at least one
of the sources, even though we know they are in conflict.
Our approach is more flexible, as we account (with a smaller
probability) for the case when neither source supplies correct
facts. We shall expand this later in Example 5 in Section 3.

The notion of operational repair fulfills our goal of provid-
ing new flexible ways of query answering: for a given tuple
t̄, we can add up the likelihoods of all repairing sequences
s for which t̄ ∈ Q(s(D)) to get the likelihood that t̄ is in
the answer to Q. This is a much more refined notion than
the usual certain answers. It lets us devise approximation
schemes with different types of guarantees for answering
not only conjunctive, but arbitrary first-order queries in the
CQA framework. In fact, as an application of our framework
we shall study the complexity of different types of approxi-
mation schemes. While some remain computationally hard,
we show that for a large class of updates, efficient approxi-
mations with probabilistic guarantees exist for all first-order
queries and most common database constraints.

Outline of main results. Our main contributions include the
new operational framework for database repairs and consis-
tent query answering, and the study of its complexity, both
exact and approximate.



The operational approach, described in detail in Section 3,
formalizes the notions informally presented earlier: con-
straints and their violations, justified operations, repairing
sequences, and Markov chains on such repairing sequences
that let us compare their relative importance. This culmi-
nates in the definition of an operational repair and a new
semantics of query answering based on the degree of cer-
tainty that a tuple is in the answer. Since operational repairs
have probabilities assigned to them, this degree of certainty
is formally defined as a conditional probability that a tuple
is in the query answer, under the condition that the database
on which the query is asked is an operational repair. We also
present detailed examples to illustrate the new framework.

With the framework in place, we study the complexity of
query answering. Since operational repairs can encode the
classical repairs of [1], it is not surprising that in general the
complexity of query answering for first-order (and even con-
junctive) queries is intractable. We pinpoint the exact com-
plexity: FP#P-complete (note that the output of the query
answering in this case is not yes or no, but rather a number,
namely the conditional probability, as explained above).

With this bound, one looks for approximations, and given
the probabilistic nature of query answers, we look for ap-
proximations via randomized algorithms. There are two
types of guarantees for calculating the conditional probabil-
ity p of a tuple t̄ by means of a randomized algorithm that
returns a number a. Either |a− p| ≤ ǫ · p, for a fixed ǫ > 0
(multiplicative error guarantees), or |a − p| ≤ ǫ (additive
error guarantees). Since a is the output of a randomized al-
gorithm, we require these to hold with a high probability, say
at least 1 − δ for small 1 > δ > 0. Multiplicative error al-
gorithms (so-called FPRAS: fully polynomial-time random-
ized approximation scheme) are more common in the litera-
ture since the relative error between the output of an FPRAS
and the value we want to approximate is bounded by ǫ. In
the case of additive error algorithms, only the absolute er-
ror is bounded by ǫ, whereas the relative error increases as
the value we want to approximate decreases. Nevertheless,
additive error algorithms are equally useful for our purposes
since we are approximating probabilities (i.e., the probabil-
ity of a tuple being in the query answer). Thus, having a high
relative error for tuples with small probability is a reasonable
price to pay, since such tuples are much less important than
tuples with high probability.

We establish two results: our query answering prob-
lem does not admit an FPRAS (under some widely be-
lieved complexity-theoretic assumptions) but it does admit a
polynomial-time randomized approximation algorithm with
additive error guarantees. The latter happens under a mild
restriction on the Markov chain that it does not admit failing
sequences of updates, i.e., sequences that cannot be extended
but do not yet repair the database. This is a common oc-
currence and it covers such common cases as key (or, more
generally, EGD) violations. We describe this randomized
algorithm, and discuss how it can be implemented in prac-
tice, to provide meaningful statements about query answers
in settings that so far were beyond the CQA approach.

Organization. Notations are given in Section 2. In Section 3
we present the basics of the operational approach, and in
Section 4 we describe query answering under this approach

and study its complexity. In Section 5 we study approxima-
tions of the query answering problem with different types of
guarantees. In Section 6 we give an extensive list of open
problems that we hope to solve with the new framework.

2. PRELIMINARIES

In this section, we recall the basics on relational databases
and constraints, and we fix some basic notation.
Relational Databases. We assume a countably infinite set
C of constants from which database elements are drawn. A
(relational) schema S is a finite set of relation symbols (or
predicates) with associated arity. We write R/n to denote
thatR has arity n. A fact over S is an expression of the form
R(c1, . . . , cn), where R/n ∈ S with n > 0, and ci ∈ C

for each i ≤ n. A database instance (or simply database)
over S is a finite set of facts over S. The active domain of a
database D, denoted dom(D), is the set of constants in D.

Constraints. We shall be using standard database con-
straints: tuple- and equality-generating dependencies as well
as denial constraints. Let V be a countably infinite set of
variables disjoint from C. An atom over a schema S is an
expression R(t1, . . . , tn), where R/n ∈ S, and ti ∈ C ∪V

for each 1 ≤ i ≤ n (thus, a fact is an atom without vari-
ables). Our constraints over a schema S, are defined as first-
order sentences:

• tuple-generating dependency (TGD) is a sentence of
the form

∀x̄∀ȳ
(

ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

, (1)

where ϕ and ψ are non-empty conjunctions of atoms
over S;

• an equality-generating dependency (EGD) is a sen-
tence of the form

∀x̄
(

ϕ(x̄) → xi = xj
)

, (2)

where ϕ is a non-empty conjunction of atoms over S,
and xi, xj are variables of x̄;

• a denial constraint (DC) is a sentence of the form

∀x̄ ¬ϕ(x̄), (3)

where ϕ is a non-empty conjunction of atoms over S.

A database D satisfies a constraint if the corresponding
sentence is true in D. In what follows, we use commas
instead of ∧ for conjunctions of atoms, as is common in
the rule-based syntax of conjunctive queries. Recall that
EGDs can express keys and functional dependencies; for in-
stance, to say that the first attribute of R is a key, we write
∀x, y, z (R(x, y), R(x, z) → y = z). TGDs can express in-
clusion dependencies, e.g., ∀x, y (R(x, y) → ∃z S(z, x)) is
the inclusion dependency R[1] ⊆ S[2]. Thus the combina-
tion of EGDs and TGDs can express foreign keys. With de-
nial constraints, one can express conditions such as disjoint-
ness of attribute domains: e.g., ∀x, y, z ¬(R(x, y), R(z, x))
says that the same constant cannot be a value of both the
first and the second attribute of R. As is common, we omit
universal quantifiers from TGDs, EGDs, and DCs; that is,
every variable that occurs in them, except those existentially
quantified in TGDs, is assumed to be universally quantified.



We also find it convenient to view satisfaction of these
constraints via homomorphisms; this will be useful for for-
malizing the notion of violations. For a set of atoms A, we
let dom(A) be the set of all constants and variables occur-
ring in A. A homomorphism from a set of atoms A to a set
of atoms A′ is a mapping h : dom(A) → dom(A′), which
is the identity on C, such that, for every atom R(t̄) ∈ A, the
atom R(h(t̄)) is in A′. Let h(A) = {R(h(t̄)) | R(t̄) ∈ A}.

Notice that a conjunction of atoms in a formula can be
viewed as a set of atoms (i.e., the tableau). Thus we can
talk about homomorphisms from a conjunction of atoms to
a database. In view of this, satisfaction of constraints can be
restated as follows. A database D satisfies

• TGD (1) if for every homomorphism h from ϕ(x̄, ȳ) to
D, there is a homomorphism h′ from ψ(h(x̄), z̄) to D;

• EGD (2) if, for every homomorphism h from ϕ(x̄) to
D, we have h(xi) = h(xj);

• DC (3) if there is no homomorphism from ϕ(x̄) to D.

Henceforth, we use the term constraint to refer to TGDs,
EGDs and DCs. A database D is consistent with a set Σ of
constraints, written D |= Σ, if D satisfies each constraint of
Σ; otherwise, D is inconsistent with Σ.

Queries. We consider first-order queries Q(x̄) that are ex-
pressions of the form {x̄ | ϕ}, where ϕ is a first-order for-
mula with free variables x̄. The output ofQ on a databaseD
is the set of tuples Q(D) = {c̄ ∈ dom(D)|x̄| | D |= ϕ(c̄)}.

Consistent Query Answering. As said in Section 1, incon-
sistent databases are a real-life phenomenon that arise due to
many reasons such as integration of conflicting sources. To
obtain meaningful answers from inconsistent data, [1] intro-
duced the notion of consistent query answers, which we now
recall.

For two databasesD,D′, the measure of distance between
them is defined as their symmetric difference ∆(D,D′) =
(D−D′) ∪ (D′ −D). Then for an inconsistent database D
(w.r.t. a set of constraints Σ), a consistent database D′ over
dom(D) and constants used in Σ is a repair if ∆(D,D′) is
minimal w.r.t. to subset inclusion. In other words, there is no
other such consistent database D′′ for which ∆(D,D′′) (
∆(D,D′). We denote the set of repairs of D w.r.t Σ by
[[D]]

ABC

Σ ; i.e., the Arenas-Bertossi-Chomicki (ABC) seman-
tics of an inconsistent database. Consistent query answers,
as defined in [1], are certain answers under the ABC seman-
tics. Given a database D, a set of constraints Σ, and a query
Q, the consistent answer to Q w.r.t. D and Σ, is the set of
tuples

⋂

{Q(D′) | D′ ∈ [[D]]
ABC

Σ }.

3. THE OPERATIONAL APPROACH

As explained in Section 1, we propose a new operational
approach to CQA, based on the concepts of operations, vi-
olations of constraints and repairing sequences, and ways to
assign likelihood to such sequences. We proceed to define
these concepts for relational databases and constraints from
the three classes seen earlier (TGDs, EGDs, and DCs) in a
way that satisfy the minimal requirements from Section 1.

Operations and Violations

The notion of operation is the building block of our ap-
proach. For relational databases, the operations that we con-
sider here are standard updates +F that add a set of facts F
using constants occurring in the database and the constraints,
or −F that remove F from a database. To formalize this, we
define the base, denoted by B(D,Σ), for a databaseD and a
set Σ of constraints over a schema S, as the set of all facts of
the form R(c1 . . . , cn) where R/n ∈ S, and c1, . . . , cn are
constants that occur in dom(D) or in Σ. We use the notation
P(·) for powerset.

Definition 1. (Operation) For a database D and a set
Σ of constraints, a (D,Σ)-operation is a function op :
P(B(D,Σ)) → P(B(D,Σ)) such that either:

1. op(D′) = D′ ∪ F , for every D′ ∈ P(B(D,Σ)); or

2. op(D′) = D′ − F , for every D′ ∈ P(B(D,Σ))

for a set of facts F ⊆ B(D,Σ). We shall refer to these
operations as +F or −F respectively.

Technically speaking, the operations +F and −F depend
on D and Σ, as they are only defined over B(D,Σ). Since
D and Σ will be clear from the context, we may refer to
them simply as operations, omitting D and Σ. Also when
F contains a single atom R(ā), we write +R(ā) and −R(ā)
instead of the more formal +{R(ā)} and −{R(ā)}. At this
point, let us clarify that, although we focus on insertions and
deletions of facts as described above, the proposed frame-
work can be extended by considering also other forms of op-
erations such as insertions with null values [5, 6] or attribute-
based operations [36]. Actually, as discussed in Section 6,
these are issues that we are planning to address in the near
future. The idea is then to iteratively apply operations, start-
ing from a databaseD, until we reach a database that is con-
sistent with Σ. However, by itself this does not meet the
minimal requirement req1 that at least one violation should
be resolved. To impose this requirement, we need to keep
track of all the reasons that cause the inconsistency of D
with Σ. This brings us to the notion of constraint violation.

Recall that all constraints we consider here are of the form
κ = ∀x̄(ϕ(x̄) → ψ(x̄)), where ψ may contain existential
quantifiers. We also often omit universal quantification, sim-
ply writing κ = ϕ(x̄) → ψ(x̄). This includes TGDs, EGDs,
and DCs as well, since ¬ϕ is of course ϕ → ⊥. A viola-
tion of such a constraint is an instantiation ā of free vari-
ables that makes the implication false, i.e., ϕ(ā) is true but
ψ(ā) is false. It will be convenient to formally define vio-
lations in terms of homomorphisms. Recall that in all the
constraints κ = ϕ(x̄) → ψ(x̄), the formula ϕ is a con-
junction of atoms, and thus can be viewed as a set of atoms
over constants and variables in x̄. An assignment of values
ā to variables x̄ making ϕ(ā) true is then a homomorphism
h : dom(ϕ) → dom(D). We let h(κ) be κ in which every
variable x from x̄ is replaced with h(x).

Definition 2. (Constraint Violation) For a database D, a
D-violation of a constraint κ = ϕ→ ψ is a homomorphism
h : dom(ϕ) → dom(D) such that D does not satisfy h(κ).
We denote the set of D-violations of κ by V(D,κ) and for



a set Σ of constraints we write V(D,Σ) for {(κ, h) | κ ∈
Σ and h ∈ V(D,κ)}.

Therefore, (κ, h) ∈ V(D,Σ) means that one of the rea-
sons why the database D is inconsistent with Σ is be-
cause it violates κ ∈ Σ due to the homomorphism h. A
(D,Σ)-operation op is (D′,Σ)-fixing, for D′ ⊆ B(D,Σ), if
V(D′,Σ) − V(op(D′),Σ) 6= ∅. Sequences of such opera-
tions will satisfy the minimal requirement req1.

While fixing operations meet the minimal requirement, in
the concrete case of TGDs, EGDs and DCs, they may add or
remove facts without any justification, as shown below.

Example 1. Let D = {R(a, b), R(a, c), T (a, b)} and
consider the set Σ = {σ, η} of constraints

σ = R(x, y) → ∃z S(x, y, z)

η = R(x, y), R(x, z) → y = z.

Clearly, the operation op1 = +{S(a, b, c), S(a, a, a)} is fix-
ing since it eliminates from V(D,Σ) the violation (σ, h),
where h = {x 7→ a, y 7→ b}. However, there is no justifi-
cation for adding the fact S(a, a, a). Actually, +S(a, b, c),
which adds fewer atoms than op1, is still fixing.

Another example of an operation that is fixing but unjus-
tified is op2 = −{R(a, b), T (a, b)}. The above operation
is fixing since it removes from V(D,Σ) the pairs (σ, h1),
(η, h2) and (η, h3), where h1 = {x 7→ a, y 7→ b}, h2 =
{x 7→ a, y 7→ b, z 7→ c} and h3 = {x 7→ a, y 7→ c, z 7→ b}.
Nevertheless, there is no justification for removing the fact
T (a, b) since it does not contribute in any of the above D-
violations of Σ. An example of a justified operation that
resolves (σ, h1) is −R(a, b). Moreover, there are three jus-
tified operations that resolve (η, h2) and (η, h3), namely
−R(a, b), −R(a, c) and −{R(a, b), R(a, c)}.

From the above discussion, we conclude that operations
should not only be fixing, but also add as few facts as possi-
ble in order to fix a violation, and delete a set of facts only if
it contributes as a whole in a violation. Such operations are
called justified, and they are formalized below.

Definition 3. (Justified Operation) Let D be a database
and Σ a set of constraints. For a database D′ ⊆ B(D,Σ),
an operation op ∈ {+F,−F} is called (D′,Σ)-justified if
there exists (κ, h) ∈ V(D′,Σ)−V(op(D′),Σ) such that for
every non-empty set G ( F

1. if op = +F then (κ, h) ∈ V(+G(D′),Σ)

2. if op = −F then (κ, h) 6∈ V(−G(D′),Σ).

Note that a (D′,Σ)-justified operation is (D′,Σ)-fixing
since V(D′,Σ) − V(op(D′),Σ) 6= ∅. For TGDs, EGDs,
and DCs, these operations can be described as follows.

PROPOSITION 1. Let D be a database, Σ a set of con-
straints, and D′ ⊆ B(D,Σ). If op is (D′,Σ)-justified, then
there exists (κ, h) ∈ V(D′,Σ)− V(op(D′),Σ) such that

• If κ = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and op = +F , then
F = h′(ψ(x̄, z̄))−D′, for some extension h′ of h.

• If κ is an arbitrary constraint of the form ϕ → ψ and
op = −F , then F ⊆ h(ϕ).

This simply says that justified operations are very cautious
with additions: they add the minimal set of atoms necessary
to satisfy a TGD. Notice that single-atom insertions may not
be enough to satisfy a multi-head TGD in a single step, and
thus, it is crucial to allow the addition of sets of atoms. On
the other hand, justified operations are less cautious with
deletions, in the sense that they do not try to minimize the
number of atoms that need to be removed. This reflects the
discussion in the introduction that removing a set of facts
that collectively contribute to a violation is a justified oper-
ation in constructing repairs, due to the fact that we do not
know a priori which atoms should be eliminated, and are,
therefore, forced to explore all the possible ways.

Repairing Sequences of Operations

The core idea of our operational approach is that one re-
peatedly applies justified operations starting from an incon-
sistent database D. Justified operations ensure requirement
req1, i.e., every single step in isolation is justified. However,
due to potential interaction of operations, they may break re-
quirement req2 that previously eliminated violations cannot
be reintroduced. It is easy to construct examples showing
how an addition may reintroduce a violation that has been
previously eliminated by a deletion, and vice versa.

We could simply impose req2 on repairing sequences
and then consider those of them that lead to a consistent
database. However, as we mentioned in Section 1, these are
minimal requirements that assume nothing about the struc-
ture of update operations, databases, and constraints. For our
concrete data model and operations, these minimal require-
ments may be supplemented by others. We now consider
two of them, motivated by examples below.

Example 2. Consider the databaseD and key constraint η
of Example 1, and let Σ′ = {σ, η}, where σ = T (x, y) →
R(x, y). Assume that we apply −{R(a, b), R(a, c)} fol-
lowed by +R(a, b). It is easy to check that this sequence
satisfies req1, req2, and leads to a consistent database. Nev-
ertheless, we would like to rule out such a sequence since
it has two conflicting operations −R(a, b) and +R(a, b). In
fact, this sequence is equivalent to a simpler one consisting
just of −R(a, c). We would like to rule out sequences in
which an operation cancels the effect of another one, i.e.,
impose the following condition:

• No Cancellation: A fact that has been added (removed)
should not be removed (added) later.

Our next example shows that in a sequence of justified op-
erations, which lead to a consistent database, a fact that has
been added may become unjustified. We should not con-
sider such sequences as repairing ones since a fact should be
added only if it is really needed to satisfy a constraint.

Example 3. Consider the database D and the set Σ =
{σ, η} of constraints given in Example 1. Assume that we
apply the operations +S(a, b, c) and −R(a, b) in this or-
der. This sequence satisfies req1 and req2, and can eas-
ily be extended (e.g., with +S(a, c, b)) to lead to a consis-
tent database. However, the reason why S(a, b, c) has been
added was the existence of R(a, b), or, in other words, the



violation (σ, h), where h = {x 7→ a, y 7→ b}. But, after the
removal of R(a, b) by the second operation, S(a, b, c) is not
needed anymore. Thus, its existence becomes unjustified.
We want to forbid this by imposing the following condition:

• Global Justification of Additions: The justification for
added facts should remain valid.

We proceed to formalize the above properties, and intro-
duce the notion of repairing sequence. Consider a database
D and a set Σ of constraints. Given a sequence (perhaps
even infinite) s = (opi)i≥1 of (D,Σ)-operations, we define

Ds
0 = D and Ds

i = opi(· · · op1(D) · · · ) for i > 0.

In other words, Ds
i is obtained by applying to D the first i

operations of s. The notion of repairing sequence follows:

Definition 4. (Repairing Sequence) Consider a database
D and a set Σ of constraints. A sequence of (D,Σ)-
operations s = (opi)i≥1 is called (D,Σ)-repairing if it sat-
isfies req1 and req2, and for every i ≥ 1:

1. (Local Justification) opi is (Ds
i−1,Σ)-justified.

2. (No Cancellation) opi = +F and opj = −G implies
F ∩G = ∅, for every i 6= j.

3. (Global Justification of Additions) For every j > i,
opi = +F implies opi is (Ds

i−1−H,Σ)-justified, with
H =

⋃

i<k≤j,
opk=−G

G.

Let RS(D,Σ) be the set of all (D,Σ)-repairing sequences.

We proceed to establish some crucial properties of repair-
ing sequences.

PROPOSITION 2. Consider a databaseD, a set Σ of con-
straints, and a sequence s = (opi)i≥1 ∈ RS(D,Σ). It holds
that s and RS(D,Σ) are finite.

Finiteness of repairing sequences is an immediate corol-
lary of req1, req2, and the fact that the number of viola-
tions is finite. Actually, it is implicit in the proof of Proposi-
tion 2 that the length of a repairing sequence is polynomial
in the size of D. Finiteness of repairing sequences, together
with the fact that the number of operations is finite, implies
finiteness of RS(D,Σ) as well. For a repairing sequence
s = (opi)1≤i≤n, we can define its result as s(D) = Ds

n.

Note that in the definition of repairing sequences we did
not insist that the resulting database is consistent, i.e., that
s(D) |= Σ. Such sequences describe different states of a
process trying to construct a repair. There are always se-
quences s such that no extension s · op is a (D,Σ)-repairing
sequence; we call these sequences complete. Complete se-
quences describe attempts to construct repairs, and attempts
can succeed or fail. They succeed if s(D) |= Σ, i.e., the se-
quence is successful, otherwise it is failing. As an example
of a failing sequence, consider the database D = {R(a)}
and the set of constraints Σ = {R(x) → T (x), T (x) →⊥}.
The (D,Σ)-repairing sequence s = +T (a) is failing since s
cannot be extended into a repairing sequence and s(D) 6|= Σ.

Operational Repairs

The high-level idea of our approach is to repair an inconsis-
tent database by repeatedly applying justified operations, as
long as they give rise to a repairing sequence. As already
explained in Section 1, this gives us additional flexibility in
deciding which updates are more likely than others, while
the standard CQA approach declares them all to be equally
likely. A formalization of different likelihoods of different
operations can easily be done by exploiting a well known
tool from probability theory, namely Markov chains [25].
Let us illustrate this via a simple example.

Repairing Sequences in Action. Consider the database

D = {Pref(a, b), Pref(a, c), Pref(a, d),

Pref(b, a), Pref(b, d), Pref(c, a)},

and the set Σ that contains a single DC

Pref(x, y), Pref(y, x) → ⊥,

which states that the preference relation over, e.g., products,
is not symmetric. It is clear that D is inconsistent w.r.t. Σ.
Our goal is to repair D via a (D,Σ)-repairing sequence of
operations, which, in this case, are always deletions. How-
ever, during the repairing process, we would like to take into
account the fact that some products have more support than
other ones. For example, a has more support than b since a
is preferred more often than b. This is achieved by apply-
ing the (D,Σ)-operation −Pref(b, a) with higher probabil-
ity than −Pref(a, b) since it is more likely that a is preferred
over b, and thus we would like to keep Pref(a, b) with higher
probability than removing it.

Our intention described above can be nicely captured via
a tree-shaped Markov chain M like the one shown below.
The Markov chain M is basically a tree that encodes all the
possible (D,Σ)-repairing sequences that lead to a database
that is consistent with Σ:

ε

-(a,b)

2/9

-(b,a) -(a,c) -(c,a)

3/9 1/9
3/9

-(a,b), -(a,c) -(a,b), -(c,a)

-(b,a), -(a,c) -(b,a), -(c,a)

-(a,c), -(a,b) -(a,c), -(b,a)

-(c,a), -(a,b) -(c,a), -(b,a)

1/3 2/3 2/4 2/4

1/4 3/4 2/5 3/5

For brevity, we omit the predicate Pref in the above figure,
i.e., instead of writing −Pref(a, b) we simply write −(a, b).
The states ofM are (D,Σ)-repairing sequences with ε being
the empty sequence, which is by definition repairing. The
edges are labeled with a probability p ∈ [0, 1], which is sim-
ply the probability of moving from one state to another.

Starting from the database D, the probability of removing
Pref(b, a) is 3/9, and the probability of removing Pref(a, b)
is 2/9. This captures our intention of keeping Pref(a, b)
with higher probability than removing it since a has more
support than b in D. In fact these probabilities are not ar-
bitrary but rather are provided by a precise algorithm that
extracts them from the data; this will be explained in Exam-
ple 4. Analogously, since a has more support than c inD, the



probability of removing Pref(c, a) is higher than the proba-
bility of removing Pref(a, c). Now, assume that we choose
to apply −Pref(b, a), and thus construct the database D′ =
D − {Pref(b, a)}. The probability of removing Pref(c, a)
is 3/4, while the probability of removing Pref(a, c) is 1/4,
which again captures our intention of keeping Pref(a, c) with
higher probability than removing it since a has more sup-
port than c in D′. Observe that the leaves of M are re-
pairing sequences s such that s(D) |= Σ. These sequences
are complete, and thus cannot be extended further. Since
in a Markov chain the probabilities of the outgoing edges
of a state must sum up to one, every leaf of M has an im-
plicit outgoing edge connecting it to itself with probability 1.
Having the Markov chain M in place, we can assign prob-
abilities to repairs. For example, the probability of the re-
pair D − {Pref(b, a), Pref(c, a)} is 3

9 · 3
4 + 3

9 · 3
5 = 0.45,

which is the probability that the initial state ε reaches the
state −(b, a),−(c, a) plus the probability that ε reaches the
state −(c, a),−(b, a).

As we shall see in the next section, having repairs with
probabilities allows us to talk about the probability with
which a consistent answer is entailed. We now proceed with
the formalizations of our approach. But first we need to re-
call the basics on Markov chains.

The Basics on Markov Chains. A Markov chain is essen-
tially an edge-labeled directed graph, where the nodes are its
states and the edges are labeled with a probability p ∈ [0, 1]
so that for each node s, the labels of its outgoing edges sum
up to 1. An edge (s, s′) with label p says that with probabil-
ity p, the state changes from s to s′. The goal is to answer
questions of the form: what is the probability that, starting
from a certain state s, we reach state s′ after k steps?

Formally, a Markov chain M over a (finite) state space
S = {s0, . . . , sk} is a pair (s0,P), where s0 is the initial
state of M and P : S × S → [0, 1] is a stochastic function,
i.e.,

∑

s′∈S P(s, s′) = 1 for every state s ∈ S. Since S is
finite, the function P can be naturally seen as an |S| × |S|
matrix, called probability transition matrix, whose (i, j)-th
cell contains P(si, sj). By abuse of notation, whenever P
is treated as a matrix, we write P(si, sj) instead of P(i, j).
Starting from the state si, the probability of reaching sj after
n steps is Pn(si, sj), where Pn =

∏n

i=1 P.
A state s ∈ S is called absorbing if P(s, s) = 1, i.e., s is

reachable from itself with probability 1. The set of reachable
absorbing states ofM is the set of absorbing states ofM that
are reachable from s0 with non-zero probability, i.e., the set

ras(M) =

{

s ∈ S

∣

∣

∣

∣

P(s, s) = 1 and
∃n such that Pn(s0, s) > 0

}

.

Finally, a key notion is the hitting distribution of M , defined
as the limit limn→∞ P

n(s0) if it exists, where Pn(s0) is the
0-th row of Pn; otherwise, we say that M does not admit
a hitting distribution. Intuitively, the hitting distribution de-
scribes the long-term behavior of the Markov chain.

Repairs via Markov Chains. We now formalize the idea of
assigning likelihoods to operations extending sequences: for
all possible extensions s · op1, . . . , s · opk of a repairing se-
quence s, we assign probabilities p1, . . . , pk to them so they
add up to 1. This is done by exploiting a tree-shaped Markov

chain that arranges its states (i.e., repairing sequences) in
a tree, where the children of each state are its possible ex-
tensions. Furthermore, states corresponding to complete se-
quences, i.e., cannot be extended, coincide with the absorb-
ing states of the Markov chain. Formally, let ε be the empty
sequence of operations, which is by definition repairing.

Definition 5. (Repairing Markov Chain) For a database
D and a set Σ of constraints, a (D,Σ)-repairing Markov
chain is a Markov chain of the form (ε,P), where P :
RS(D,Σ)× RS(D,Σ) → [0, 1] is such that:

1. For each sequence s ∈ RS(D,Σ), s is complete iff it
is absorbing, i.e., P(s, s) = 1.

2. If s, s′ ∈ RS(D,Σ) are distinct, then P(s, s′) > 0
implies s′ = s · op for some (D,Σ)-operation op.

A repairing Markov chain generator w.r.t. Σ is a function
MΣ that assigns to each database D a (D,Σ)-repairing
Markov chain MΣ(D).

The purpose of the repairing Markov chain generator is to
provide a generic mechanism for defining a family of repair-
ing Markov chains independently of the input database. This
means that one can design a repairing Markov chain genera-
tor MΣ once, and whenever the database D changes, the de-
sired repairing Markov chain is obtained by simply applying
MΣ on D. Of course, the way the repairing Markov chain
generator is designed depends on the specific application.
For instance, in our preference example given above, our in-
tention is to assign probabilities to operations in such a way
that the repairing process reflects the fact that some products
have more support than other ones in the input database. In-
stead of devising a (D,Σ)-repairing Markov chain that cap-
tures our intention on the particular database D, as we did
above, one can design a repairing Markov chain generator
MΣ such that, for every input database D over the schema
{Pref}, MΣ(D) is the desired repairing Markov chain that
captures our intention on D. The definition of MΣ follows.

Example 4. Consider again the product preferences sce-
nario, and let Σ be the set that contains the single denial con-
straint which states that the preference relation is not sym-
metric. We define a repairing Markov chain generator MΣ

such that, for every database D over {Pref}, MΣ(D) is the
repairing Markov chain that we are looking for.

Let the weight w(α,D) of an atom α = {Pref(a, b)} in
a database D be the number of facts Pref(a, ·) in D, i.e.,
where a is preferred. Assuming that VΣ(D) collects all the
atoms that are involved in a violation of Σ by D, the impor-
tance IΣ(α,D) of an atom α ∈ D is defined as the relative
weight of α w.r.t. all the atoms involved in a violation, i.e.,
IΣ(α,D) = w(α,D)/

∑

β∈VΣ(D) w(β,D). We then define
the probability of removing an atom α = Pref(a, b) as the
importance of its symmetric atom ᾱ = Pref(b, a). Formally,
the repairing Markov chain MΣ(D) = (ε,P) is such that
for s, s′ ∈ RS(D,Σ),

P(s, s′) =



















1 if s = s′ and s is complete

IΣ(ᾱ, s(D)) if s′ = s · −α, for α ∈ D

0 otherwise.



It is easy to verify that this gives us a Markov chain (prob-
abilities sum up to 1), and if we consider the databaseD used
in our preference example above, then MΣ(D) is precisely
the (D,Σ)-repairing Markov chain depicted in the figure.

The aim of the above simple example based on the prefer-
ence scenario was to illustrate the key notion of the repairing
Markov chain generator. To demonstrate the existence of ap-
propriate Markov chain generators in realistic scenarios, we
give another, slightly more involved example, based on the
standard scenario of data integration. In such a scenario, dif-
ferent (possibly conflicting) facts, which are coming from
different sources, have to be integrated into a single unified
database. In this setting, it is common to assign to each fact
a level of trust that depends on the source it is coming from.
Such a level of trust can be computed by applying one of the
many methodologies that have been proposed in the litera-
ture; see, e.g., [14, 38].

Example 5. Consider the schema S = {R/2} and let Σ
contain a single key R(x, y), R(x, z) → y = z (the discus-
sion easily generalizes to an arbitrary set of keys). Let D
be a database over S that has been obtained by integrating
data from different sources, where each fact α ∈ D is as-
signed a level of trust denoted by tr(α) ∈ [0, 1]. Given two
facts α, β ∈ D, we define the relative trust of α w.r.t. β, as
trα|β = tr(α)/(tr(α) + tr(β)).

Let VΣ(D) = {{α, β} ⊆ D | {α, β} 6|= Σ} be the set of
all pairs of atoms violating Σ. There are three possible ways
of fixing the violations due to {α, β} ∈ VΣ(D): either re-
move only α, or remove only β, or remove both. Our inten-
tion is as follows: trα|β < trβ|α implies that the operation
−α should have a higher probability than −β. Furthermore,
the probability of −{α, β} should be lower than the prob-
ability of −α and the probability of −β. To formally cap-
ture our intention via a repairing Markov chain generator,
we first define the weight of each operation trying to fix the
violations due to {α, β} ∈ VΣ(D). The weight wα,β(−F )
of applying −F is equal to 0 if F ∩ {α, β} = ∅, otherwise

wα,β(−α) = trβ|α · (1− trα|β · trβ|α)

wα,β(−β) = trα|β · (1− trα|β · trβ|α)

wα,β(−{α, β}) = (1− trα|β) · (1 − trβ|α).

The first (resp., second) formula encodes the event of trust-
ing β (resp., α) but not both α and β, while the last formula
encodes the event of trusting neither α nor β. Notice that
for every {α, β} ∈ VΣ(D), the three weights above sum up
to one, i.e., they encode relative weights of each operation
fixing a violation due to {α, β}.

To devise our repairing Markov chain generator MΣ, we
normalize the weights of each set {α, β} ∈ VΣ(D) w.r.t. all
the sets in VΣ(D). For every database D over the schema S,
MΣ(D) = (ε,P) is such that for s, s′ ∈ RS(D,Σ),

P(s, s′) =































1 if s = s
′ is complete

∑

{α,β}∈VΣ(s(D))

wα,β(−F )

|VΣ(s(D))|
if s′ = s · −F

0 otherwise.

We proceed to define our notion of operational repair: they
are obtained by repairing sequences that are reachable ab-
sorbing states of a repairing Markov chain.

Definition 6. (Operational Repair) Given a database D,
a set Σ of constraints, and a repairing Markov chain genera-
tor MΣ w.r.t. Σ, an (operational) repair of D w.r.t. MΣ is a
consistent database of the form s(D), where s is a reachable
absorbing state of MΣ(D), i.e., s ∈ ras(MΣ(D)).

Example 6. If we consider again the database D and the
set Σ in our preference example above, it is easy to see that
D has four repairs w.r.t.MΣ, whereMΣ is the Markov chain
generator defined in Example 4:

D−{Pref(a, b), Pref(a, c)} with probability 2
9 ·

1
3 +

1
9 ·

2
4 .

D−{Pref(a, b), Pref(c, a)} with probability 2
9 ·

2
3 +

3
9 ·

2
5 .

D−{Pref(b, a), Pref(a, c)} with probability 3
9 ·

1
4 +

1
9 ·

2
4 .

D−{Pref(b, a), Pref(c, a)} with probability 3
9 ·

3
4 +

3
9 ·

3
5 .

An operational repair may be obtainable via multiple re-
pairing sequences that are reachable absorbing states of the
underlying repairing Markov chain. To calculate the prob-
ability of a repair D′, we have to sum up the probabili-
ties of all reachable absorbing states s so that D′ = s(D).
These must come from the hitting distribution, but in general
Markov chains may not admit it. Fortunately, in our case the
hitting distribution always exists since a repairing Markov
chain is a finite tree-like structure, and thus, there is always
a finite path leading to an absorbing state.

PROPOSITION 3. Given a databaseD and a set Σ of con-
straints, every (D,Σ)-repairing Markov chain (ε,P) admits
a hitting distribution, i.e., limn→∞ P

n(ε) exists.

The existence of a hitting distribution lets us define the
probability of an operational repair D′ of D w.r.t. MΣ as

PD,MΣ
(D′) =

∑

s∈ras(MΣ(D)) and D′=s(D)

π(s),

where π is the hitting distribution ofMΣ(D). For a database
D′ ⊆ B(D,Σ) that is not an operational repair, we let
PD,MΣ

(D′) = 0. Finally, we define our semantics of an
inconsistent database as the set of repair-probability pairs

[[D]]MΣ
=

{

(D′,PD,MΣ
(D′))

∣

∣

∣

∣

D′ ⊆ B(D,Σ),
PD,MΣ

(D′) > 0

}

.

We conclude this section by comparing operational repairs
with the standard repairs of Arenas, Bertossi, and Chomicki
[1] (see the definition of the ABC semantics [[D]]ABCΣ in Sec-
tion 2). Of course operational repairs depend on the under-
lying Markov chain; it may be set up in such a way that
some of the ABC repairs are not reached (for example, by
assigning probability 0 to deletions, we will not be able to re-
pair key violations). However, we can always find a Markov
chain so that operational repairs with respect to it include
all ABC repairs. Let Mu

Σ be the uniform Markov chain
generator: if for s ∈ RS(D,Σ) its possible extensions in
RS(D,Σ) are exactly s1 = s · op1, . . . , sk = s · opk, then
P(s, si) = 1/k for all i ≤ k.



PROPOSITION 4. LetD be a database andΣ a set of con-

straints, and let D′ ∈ [[D]]
ABC

Σ . Then D′ is an operational
repair of D w.r.t. Mu

Σ.

4. OPERATIONAL CONSISTENT QUERY

ANSWERING

We are targeting a more refined approach to query answer-
ing compared to the usual certain answers: its goal is to
compute the probability that a tuple is in the answer. For
a database D, a set of constraints Σ, a Markov chain gen-
erator MΣ, a query Q(x̄) and a tuple t̄ of constants of arity
|x̄|, we define the conditional probability of t̄ being in the
answer to Q over some operational repair as:

CPD,MΣ,Q(t̄) =

∑

(D′,p)∈[[D]]
MΣ

and t̄∈Q(D′)

p

∑

(D′,p)∈[[D]]MΣ

p

if at least one operational repair exists (and thus the de-
nominator is not zero); otherwise, CPD,MΣ,Q(t̄) = 0. For
brevity, if D,MΣ, andQ are clear from the context, we sim-
ply write CP(t̄). Note that failing repairing sequences will
be assigned a non-zero probability in the hitting distribution,
but they should not contribute towards the probability that a
tuple is in the answer. The conditional probability accounts
for this by normalizing the probability of the tuple being in
the answer over the probabilities of successful repairing se-
quences. The definition of consistent answers follows.

Definition 7. (Operational Consistent Answers) For a
database D, a set Σ of constraints, a repairing Markov chain
generatorMΣ, and a queryQ(x̄), the set of operational con-
sistent answers to Q w.r.t. D and MΣ is OCAMΣ

(D,Q) =
{(

t̄,CP(t̄)
)

| t̄ ∈ dom(B(D,Σ))|x̄|
}

.

Example 7. We use the database D from our preference
example and the repairing Markov chain generatorMΣ from
Example 4. Consider a queryQ(x) stating that x is the most
preferred product, i.e., ∀y Pref(x, y) ∨ x = y. The set of
the certain answers to Q under the ABC semantics is empty.
Indeed in three out of four repairs shown in Example 6, such
most preferred product does not exist. In the last of the
repairs, {Pref(a, b), Pref(a, c), Pref(a, d), Pref(b, d)}, such a
product does exist, namely a. Thus, OCAMΣ

(D,Q) =
{(a, 0.45)}. This information on the degree of certainty that
a is preferred over all the other products is something that
the traditional CQA approach cannot provide us with.

Complexity Analysis

We now study the complexity of computing operational con-
sistent answers. We focus on the following function prob-
lem, called operational consistent query answering:

PROBLEM : OCQA
INPUT : A database D, a set of constraints Σ,

a repairing MC generatorMΣ w.r.t. Σ,
a query Q(x̄), and t̄ ∈ dom(B(D,Σ))|x̄|.

OUTPUT : CPD,MΣ,Q(t̄).

Let us clarify that this general formulation refers to the
combined complexity of the problem. We are interested
in the data complexity, i.e., complexity of the problem
OCQA(Σ,MΣ, Q) when Σ, MΣ, and Q are fixed, and only
the database D and the tuple t̄ form the input.

We adopt the convention that when we talk about the data
complexity of a problem like OCQA (i.e., the class of prob-
lems OCQA(Σ,MΣ, Q)), we say that it is complete for a
class K if each of the problems OCQA(Σ,MΣ, Q) is in K,
and there is one problem OCQA(Σ,MΣ, Q) that is K-hard.

Before giving the complexity of OCQA, we need to clarify
a technical issue related to the presentation of Markov chain
(generators). We assume that they are well-behaved. For a
(D,Σ)-repairing Markov chain (ε,P) this means that P is a
function computable in polynomial time w.r.t. the size of D.
Note that this implies that the problem of checking whether
a (D,Σ)-repairing sequence is complete is solvable in poly-
nomial time w.r.t. D (see condition 1 in Definition 5). We
can formally show that checking whether a (D,Σ)-repairing
sequence is complete is indeed solvable in polynomial time
in D, which means that assuming P is computable in poly-
nomial time is not unrealistic.

A Markov chain generator MΣ w.r.t. Σ is well-behaved if
for every database D, MΣ(D) is computable in polynomial
time w.r.t. the size of D, and there is a polynomial f(·) such
that MΣ(D) = (ε,P) is well-behaved and the probabilities
computed by P have a common denominator encoded us-
ing f(|D|) bits, i.e., there exists a natural number d > 0 of
f(|D|) bits such that each probability computed by P is of
the form k/d, where 0 ≤ k ≤ d and k ∈ N. In the ab-
sence of the well-behavedness assumption, the complexity
of OCQA of course may increase, but this will be due to rea-
sons that have nothing to do with consistent query answering
but rather with the internal representation of Markov chains.

Returning to the OCQA problem, it can be solved in poly-
nomial time having access to a #P oracle. Recall that #P is
the class of function problems that ask for the number of so-
lutions to an NP problem. Recall also that FP is the class of
function problems that can be solved in polynomial time.

THEOREM 5. OCQA is FP#P-complete in data complex-
ity. The hardness holds even for inclusion dependencies or
keys or denial constraints, and conjunctive queries.

Thus, OCQA cannot be efficiently solved with respect to
data complexity. This of course is not surprising since oper-
ational repairs can encode the standard ones of [1], and for
them the problem of finding certain answers (i.e., insisting
on probability 1) can be CONP-hard. The main contribu-
tion of Theorem 5 is pinpointing the exact complexity of
the problem. The key advantage of our flexible approach to
consistent query answering is that it allows us to talk about
approximations as opposed to exact query answering. This
is the subject of the next section.

5. TOWARDS EFFICIENT APPROXIMA-

TIONS

When a problem is computationally hard, it is natural to
approximate it. Our problem is FP#P-complete, and its out-



put is a number, namely CPD,MΣ,Q(t̄). In general, approx-
imations to such problems can be computed by randomized
algorithms A with some probabilistic guarantees. Such al-
gorithms, in addition to their input, receive a stream of ran-
dom bits that they can use for the purpose of making random
choices. The output of a randomized algorithm A, with in-
put x, is a random variable A(x) that, in our case, should be
close to CP(t̄) with high probability. The guarantees come
in two shapes: multiplicative and additive errors [35].

In our case, assume that algorithm A takes D and t̄ as an
input, with a set of constraints Σ, a Markov chain generator
MΣ, and a queryQ fixed. It also takes as input two numbers
ǫ > 0 and 0 < δ < 1. Multiplicative error means that

Pr
(

|A(D, t̄, ǫ, δ)− CP(t̄)| ≤ ǫ · CP(t̄)
)

≥ 1− δ

where Pr stands for the probability of an event, while addi-
tive error means that

Pr
(

|A(D, t̄, ǫ, δ)− CP(t̄)| ≤ ǫ
)

≥ 1− δ.

The algorithm is required to run in time polynomial in D, t̄,
1/ǫ, and log(1/δ). The parameters ǫ and δ tell us how cer-
tain we are that the randomized algorithm provides a good
approximation.

In the case of multiplicative error such an algorithm is
known as a fully polynomial-time randomized approxima-
tion scheme, or FPRAS. In general, an FPRAS is preferable
than an additive error algorithm. The reason is because the
relative error between the output of an FPRAS and the value
we want to approximate is bounded by ǫ. This is not true for
additive error algorithms, where only the absolute error is
bounded by ǫ, while the relative error increases as the value
we want to approximate decreases. Nevertheless, additive
error algorithms are very useful for our purposes since we
are approximating probabilities (i.e., the probability of a tu-
ple being in the query answer). Thus, having a high relative
error for tuples with small probability is a reasonable price
to pay, since such tuples are much less important than tuples
with high probability.

The above discussion suggests to study both multiplica-
tive and additive error algorithms. The main result of this
section is that it is hard to obtain an FPRAS for our prob-
lem, but approximation with additive error can be obtained
in polynomial time for a large class of Markov chain gener-
ators, that include (but are not limited to) all constraints we
considered here, all first-order queries, and deletion updates.

Probability Spaces and Random Variables. We need to
recall a few basic definitions. A probability space is a pair
PS = (Ω, π), where Ω is a finite set, called sample space,
and π : Ω → [0, 1] is a function such that

∑

ω∈Ω π(ω) = 1.
A subset E ⊆ Ω is called an event. The probability of an
event E, denoted Pr(E) is defined as

∑

ω∈E π(ω). A ran-
dom variable over PS is a function X : Ω → Q. The prob-
ability distribution of X is a function πX from the image of
X to [0, 1] such that πX(x) = Pr(X = x), where X = x
denotes the event {ω ∈ Ω | X(ω) = x}.

Approximation Via FPRAS

We proceed to show that the problem OCQA does not admit
an FPRAS, even for very restricted settings such as keys and
conjunctive queries. We fix a set Σ of constraints, a repairing

Markov chain generator MΣ w.r.t. Σ, and a query Q(x̄). An
FPRAS for OCQA(Σ,MΣ, Q) is a randomized algorithmA
that takes an instance I = (D, t̄) as well as ǫ and δ, and pro-
duces a random variable A(I, ǫ, δ) over some sample space
Ω1. In particular,A(I, ǫ, δ)(ω) is a rational number for every
ω ∈ Ω. Now consider the event E ⊆ Ω given by

E = {ω ∈ Ω | |A(I, ǫ, δ)(ω)− CP(t̄)| ≤ ǫ · CP(t̄)}.

Then A is an FPRAS for OCQA(Σ,MΣ, Q) if

Pr(E) ≥ 1− δ

and A runs in polynomial time in I , 1/ǫ and log(1/δ).
We proceed to show that the OCQA problem does not ad-

mit an FPRAS, under the widely accepted complexity as-
sumption that RP and NP are different. Recall that RP is
the complexity class of problems that are efficiently solv-
able by a randomized algorithm with a bounded one-sided
error (i.e., the answer may mistakenly be “no”) [3].

THEOREM 6. Assume RP 6= NP. Then there exists a set
of constraints Σ, a Markov chain generator MΣ w.r.t. Σ,
and a first-order query Q such that there is no FPRAS for
OCQA(Σ,MΣ, Q). We can further assume that Σ contains
only inclusion dependencies or only key dependencies or
only denial constraints, and that Q is a conjunctive query.

A standard approach for establishing the non-existence of
an FPRAS is to show that the decision version of the function
problem in question is NP-hard [23]. This is how we prove
Theorem 6. The decision version of OCQA(Σ,MΣ, Q),
which we call tuple probability checking, is as follows:

PROBLEM : TPC(Σ,MΣ, Q(x̄))
INPUT : A database D and t̄ ∈ dom(B(D,Σ))|x̄|.
OUTPUT : Is CPD,MΣ,Q(t̄) > 0?

We show that:

PROPOSITION 7. There exists a set of constraints Σ, a
Markov chain generatorMΣ w.r.t. Σ, and a first-order query
Q such that TPC(Σ,MΣ, Q) is NP-hard. The hardness
holds even under the restrictions of Theorem 6.

Assume now that OCQA(Σ,MΣ, Q) admits an FPRAS.
We can show that TPC(Σ,MΣ, Q) is in BPP, i.e., the
class of decision problems that are efficiently solvable via
a randomized algorithm with a bounded two-sided error [3].
Since, by Proposition 7, TPC(Σ,MΣ, Q) is NP-hard, we
conclude that NP ⊆ BPP. But it is well-known that this
implies RP = NP [23], and Theorem 6 follows.

Approximation With Additive Error

Even though OCQA is not approximable with multiplicative
error, we now show that it admits an approximation with
additive error. Since the output of OCQA is a probability,
this is a strong positive result, as explained above. To obtain
it, we need to impose a restriction on repairing Markov chain
generators. Recall that ras(M) is the set of absorbing states
of a Markov chainM that are reachable from the initial state
with non-zero probability.
1There is no restriction on the sample space Ω. As we shall see be-
low, a natural sample space is the set of reachable absorbing states
of our repairing Markov chain.



Definition 8. A repairing Markov chain generator MΣ is
non-failing if, for every database D, the set ras(MΣ(D))
does not contain any failing repairing sequences.

This covers several important cases, in particular, the
case where only deletions are used, which has been thor-
oughly studied in the classical CQA setting [11]. A (D,Σ)-
repairing Markov chain M = (ǫ,P) supports only deletions
if, for every s, s′ ∈ RS(D,Σ) such that s 6= s′, P(s, s′) > 0
implies s′ = s · −F for some F ⊆ B(D,Σ), i.e., only dele-
tions are assigned non-zero probability. A repairing Markov
chain generator MΣ supports only deletions if MΣ(D) sup-
ports only deletions for every database D.

PROPOSITION 8. Consider a set Σ of TGDs, EGDs, and
DCs, and a repairing Markov chain generator MΣ. If MΣ

supports only deletions, then it is non-failing.

We now show that for non-failing Markov chain genera-
tors, OCQA is efficiently approximable up to a polynomial
additive error factor. Intuitively, the reason why we focus
on such Markov chain generators is that in the absence of
a failing repairing sequence, the probability CP(t̄) of a tu-
ple t̄ is not a conditional probability anymore since the event
of reaching a failing repairing sequence has probability 0.
Thus, we have to approximate only the numerator of CP(t̄).
The algorithm that we provide does precisely this, but it is
not yet clear how it could be used to approximate the ratio
that defines the conditional probability where the denomina-
tor is less than one.

In the rest of the section, fix a set Σ of constraints, a non-
failing repairing Markov chain generator MΣ w.r.t. Σ, and a
first-order query Q(x̄). As for the case of multiplicative er-
ror, a polynomial-time randomized approximation with ad-
ditive error forOCQA(Σ,MΣ, Q) is a randomized algorithm
A such that, for every instance I = (D, t̄) of it, where D is
a database and t̄ ∈ dom(B(D,Σ))|x̄|, ǫ > 0, and 0 < δ < 1,
guarantees

Pr(|A(I, ǫ, δ)− CP(t̄)| ≤ ǫ) ≥ 1− δ,

and runs in polynomial time in I , 1/ǫ and log(1/δ). In other
words, A returns a random variable over some sample space
Ω, and the probability of the event

{ω ∈ Ω | |A(I, ǫ, δ)(ω)− CP(t̄)| ≤ ǫ}

is at least 1− δ. Notice that the crucial difference compared
to the definition of FPRAS for OCQA(Σ,MΣ, Q) is that ǫ is
not multiplied by CP(t̄). Our main positive result follows:

THEOREM 9. For every set of constraints Σ, non-failing
repairing Markov chain generator MΣ w.r.t. Σ, and first-
order queryQ, OCQA(Σ,MΣ, Q) admits a polynomial-time
randomized approximation with additive error.

We proceed to establish the above result. The sample
space Ω that we use in the proof is the set ras(MΣ(D)) of
reachable absorbing states of MΣ(D). Since MΣ is non-
failing, the elements ofΩ are successful repairing sequences.
The distribution π on Ω is the hitting distribution ofMΣ(D).

Assume that we have access to a polynomial-time random-
ized algorithm, which we call Sample, that works as follows.

It takes as input an instance I = (D, t̄) ofOCQA(Σ,MΣ, Q)
and outputs a random variable XI over (Ω, π) that maps Ω
to {0, 1}, and Pr(XI = 1) = CP(t̄). Under this assump-
tion, we devise a polynomial-time randomized approxima-
tion with additive error for OCQA(Σ,MΣ, Q). Once this is
done, we provide a formal definition of Sample.

Consider n > 0 random variables X1
I , . . . , X

n
I that are

computed using the algorithm Sample. Let XI,n be the ran-
dom variable 1/n ·

∑n
i=1X

i
I , which is the sample mean of

X1
I , . . . , X

n
I . Note that X1

I , . . . , X
n
I are defined over the

same probability space, they have the same image {0, 1},
and Pr(X i

I = 1) = CP(t̄) for every 1 ≤ i ≤ n. Thus,
by Hoeffding’s inequality, which provides a lower bound on
the probability that the sample mean of n random variables
does not deviate from its expected value by more than some
factor [22], we obtain that

Pr(|XI,n − CP(t̄)| ≤ d) ≥ 1− 2e−2nd2

,

for d > 0. Having this inequality in place, it is not difficult
to show that

Pr(|XI,n − CP(t̄)| ≤ ǫ) ≥ 1− δ,

where ǫ > 0, 0 < δ < 1, and n = 1/2ǫ2 · ln(2/δ). It re-
mains to show thatXI,n is computable in polynomial time in
the size of I , 1/ǫ, and log(1/δ), which immediately implies
that there exists a polynomial-time randomized approxima-
tion with additive error for OCQA(Σ,MΣ, Q), as needed.
This is easily done by using the algorithm Sample: make
n = 1/2ǫ2 · ln(2/δ) calls Sample(I), and return the ratio
m/n, where m is the number of times Sample(I) outputs 1.

The Algorithm Sample. The above argument heavily relies
on the fact that we have access to the randomized algorithm
Sample, which we now describe. Recall that Sample(I),
where I = (D, t̄), should run in polynomial time and output
a random variable XI : Ω → {0, 1}, and Pr(XI = 1) =
CP(t̄). The formal definition of this algorithm follows:

1. (ε,P) :=MΣ(D)

2. s := ε

3. while s(D) is inconsistent with Σ do:

(a) N := {op | s · op ∈ RS(D,Σ),P(s, s · op) > 0}

(b) Choose op ∈ N with probability P(s, s · op)

(c) s := s · op

end while

4. If t̄ ∈ Q(s(D)), then return 1; otherwise, return 0.

Roughly speaking, the above algorithm randomly chooses
a (D,Σ)-repairing sequence s and returns 1 if s(D) entails
the input tuple t̄; otherwise, it returns 0. Note that the while-
loop terminates since there are no failing sequences and, by
construction, Sample(I) is a random variable over (Ω, π).
A key property that the algorithm Sample exploits is the
tree-like structure of the repairing Markov chain MΣ(D).
This actually allows the algorithm to construct in polyno-
mial time, in a level-by-level fashion, the probability π(s) of
a sequence s ∈ ras(MΣ(D)), where π is the hitting distri-
bution of MΣ(D). We can then show that Sample is indeed
the desired randomized algorithm:



PROPOSITION 10. Consider an instance I = (D, t̄) of
OCQA(Σ,MΣ, Q). The following hold:

• Sample(I) terminates after polynomially many steps.

• Pr(Sample(I) = 1) = CP(t̄).

Note that in fact one shows the following:

Pr(Sample(I) = 1) =
∑

(D′,p)∈[[D]]
MΣ

and t̄∈Q(D′)

p.

In general, this may be different from the probability CP(t̄)
since the denominator

∑

(D′,p)∈[[D]]
MΣ

p is missing. Never-

theless, since MΣ is non-failing, CP(t̄) is not a conditional
probability (i.e., the denominator equals to one), and thus
Pr(Sample(I) = 1) = CP(t̄).

On implementing the approximation scheme. Theorem
9 tells us that we can efficiently approximate OCQA with
additive error. How can such a scheme be implemented in
practice, when Q is an SQL query? We now outline a pos-
sible scheme for the common case of deletion updates and
key violations. The user sets numbers ǫ and δ, and computes
the number n of samples from it as 1/2ǫ2 · ln(2/δ) (to give
an idea of the magnitude of this number, it is not small but
not very large either: for ǫ = δ = 0.1, for example, it is 150,
which looks like a reasonable price to pay for approximating
an intractable problem).

We then do the following n times: from each group of
tuples in relation R that violate a key (i.e., tuples with the
same value of the key), randomly pick at most one tuple to
be left there, and collect others in a relation Rdel. Then run
the original query Q in which each relation R is replaced
with R−Rdel, and append the outcome to a temporary table
T that collects results of the n random runs. When T is
computed, for each tuple t̄ we compute the number of times
nt̄ it occurs with a simple aggregate query, and return nt̄/n
for each such t̄. This is the approximation of CP(t̄).

The question is how this will perform in practice. The
right way to answer this question is to design a proper set of
experiments, which we intend to do in the followup work. At
this early stage we wanted to make sure that the idea of the
approximation is plausible. The biggest obstacle to it would
be a significant slowdown of modified queries in which re-
lations R are replaced with R − Rdel; such slowdowns due
to optimizer difficulties are not unheard of even in simple
cases of mild changes in queries [12]. Repeating a much
slower modified query multiple times would not be feasi-
ble. We thus ran a few initial experiments on such modified
queries, which showed that their performance is quite simi-
lar to that of the original query, and thus gives us hope that,
in addition to its theoretical guarantees, the approach can be
successfully used in practice.

6. CONCLUSIONS AND FUTURE WORK

We presented a new framework for consistent query an-
swering that provides us with a much better understand-
ing of how repairs are constructed, and consequently with
a new flexible paradigm for query answering. Based on it,
we were able to push the boundaries of the CQA approach

quite far, providing an efficient approximation scheme for
all FO queries in the setting where constraints come from
the most commonly used classes, and where arbitrary dele-
tion updates are allowed. These promising early results lead
to a host of new questions we would like to address.

Approximation for Insertions and Deletions. How do we
extend the additive error approximation scheme to handle
both insertions and deletions? In this case we have to ap-
proximate a ratio and not a single number.

More Expressive Languages. We would like to extend the
approach to other languages with tractable data complexity
(e.g., with aggregates [2] or various flavors of Datalog [32]),
and extend the class of constraints, e.g., with active con-
straints that also suggest an update operation as in [10].

Different Types of Updates. We can also consider modifi-
cations of tuples. Actually, the approach closest in the spirit
to ours [21] looked at such operations.

Equally Likely Repairs. Another idea of [21] that we could
apply in our setting is to use the proportion of repairs in
which a given tuple is in the answer as a measure of cer-
tainty. This means that every repair (not even every repairing
sequence) is equally likely.

Preferences. We expressed likelihoods of operations, re-
pairs, and query answering via probabilities. A milder way
is preferences, among operations or sequences of operations,
similarly to [16, 34], or at the source level, if inconsistent
data is the result of integration [13].

Null Values. We could also use nulls (either SQL or marked)
in repairs, in cases when we insisted on adding tuples from
the base. This, of course, would bring to the fore many issues
related to incomplete information handling [31].

Other Data Models. We could also try to use our approach
with other data models (tree and graph-structured), as well
as probabilistic databases [30].

Optimizations. There are several ideas in the literature that
were proposed to speed up CQA, and which appear to be
applicable in our framework. Among them is the idea of lo-
calization of repairs [15], i.e., concentrating only on the part
of the database where violations occur, as well as dealing
with partial satisfaction of constraints [9, 29].

Query Rewriting. One can express additive error approxi-
mations by means of FO queries. These queries themselves
are dependent on the inconsistent database but their size is
not. To understand their practical feasibility we need to con-
duct an experimental study.

Ontological Query Answering. The standard ABC seman-
tics for inconsistent databases has been lifted to the ontolog-
ical setting giving rise to the so-called ABox repair seman-
tics [28]. As it is computationally hard, even for lightweight
ontology languages, several other semantics have been de-
veloped with the aim of approximating the set of consistent
answers [7, 8, 28]. Approximation in this setting refers to a
subset of consistent answers, without giving any guarantees.
We would like to apply our approach in this scenario, with
the aim of providing probabilistic guarantees.
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