31 research outputs found

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis.

    No full text
    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes

    Cell metabolism and membrane current parameters.

    No full text
    <p>Cell metabolism and membrane current parameters.</p

    Simulation of GLP-1 and GIP action at low and high glucose levels.

    No full text
    <p>(A) Cytoplasmic [Ca<sup>2+</sup>]<sub>c</sub> and cAMP dynamics. (B) AC<sub>GLP</sub>, AC<sub>GIP</sub> and AC<sub>AR</sub> are the concentrations of complexes of AC on PM (AC<sub>P</sub>) bound with corresponding G-proteins activated by GLP-1R, GIPR and α<sub>2A</sub> adrenergic receptors. (C) V<sub>ACp</sub> is G-protein and Ca<sup>2+</sup> dependent AC activity on PM, V<sub>ACc</sub> is the glucose and Ca<sup>2+</sup>-activated soluble AC activity that is independent on G-protein. At low glucose concentrations (3 mM) (left part) GLP-1 was increased from basal level (3.1e-7 μM) to 6.2e-4 μM at 1000 sec. Increased extracellular glucose level was simulated at 3000 sec (from 3 mM to 8 mM). Than GIP administration was modeled as the increased GIP from basal level (1.37e-6 μM) to 3.42e-3 μM at 5000 sec.</p

    Modeling of Ca 2+

    No full text
    corecore