41 research outputs found

    Selective transmission of R5 HIV-1 variants: where is the gatekeeper?

    Get PDF
    To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a “gatekeeper” that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers‘ localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants

    Depletion of CD4 T lymphocytes in human lymphoid tissue infected ex vivo with doxycycline-dependent HIV-1

    Get PDF
    AbstractWe investigated whether CD4+ T cells that do not produce HIV-1 are killed in HIV-infected human lymphoid tissue. Tissue blocks were inoculated with high amount of doxycycline-dependent HIV-rtTA. Doxycycline triggered productive infection and loss of CD4+ T cells in these tissues, whereas without doxycycline, neither productive infection nor CD4+ T cell depletion was detected in spite of the massive presence of virions in the tissue and of viral DNA in the cells. Thus, HIV-1 alone is sufficient to deplete productively infected CD4+ T cells but is not sufficient to cause the death of uninfected or latently infected CD4+ T cells

    Virtual Screening of acyclovir derivatives as potential antiviral agents: design, synthesis, and biological evaluation of new acyclic nucleoside ProTides

    Get PDF
    Following our findings on the anti-human immunodeficiency virus (HIV) activity of acyclovir (ACV) phosphate prodrugs, we herein report the ProTide approach applied to a series of acyclic nucleosides aimed at the identification of novel and selective antiviral, in particular anti-HIV agents. Acyclic nucleoside analogues used in this study were identified through a virtual screening using HIV-reverse transcriptase (RT), adenylate/guanylate kinase, and human DNA polymerase γ. A total of 39 new phosphate prodrugs were synthesized and evaluated against HIV-1 (in vitro and ex vivo human tonsillar tissue system) and human herpes viruses. Several ProTide compounds showed substantial potency against HIV-1 at low micromolar range while the parent nucleosides were not effective. Also, pronounced inhibition of herpesvirus replication was observed. A carboxypeptidase-mediated hydrolysis study was performed for a selection of compounds to assess the formation of putative metabolites and support the biological activity observed

    Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

    Get PDF
    West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention

    Extracellular vesicles and viruses : Are they close relatives?

    No full text
    Extracellular vesicles (EVs) released by various cells are small phospholipid membrane-enclosed entities that can carry miRNA. They are now central to research in many fields of biology because they seem to constitute a new system of cell-cell communication. Physical and chemical characteristics of many EVs, as well as their biogenesis pathways, resemble those of retroviruses. Moreover, EVs generated by virus-infected cells can incorporate viral proteins and fragments of viral RNA, being thus indistinguishable from defective (noninfectious) retroviruses. EVs, depending on the proteins and genetic material incorporated in them, play a significant role in viral infection, both facilitating and suppressing it. Deciphering the mechanisms of EV-cell interactions may facilitate the design of EVs that inhibit viral infection and can be used as vehicles for targeted drug delivery

    Measurement of Human Immunodeficiency Virus Type 1 Preintegration Transcription by Using Rev-Dependent Rev-CEM Cells Reveals a Sizable Transcribing DNA Population Comparable to That from Proviral Templates ▿

    No full text
    Preintegration transcription is an early process in human immunodeficiency virus type 1 infection and has been suggested to occur at a low level. The templates have also been suggested to represent a small population of nonintegrated viral DNA, particularly the two-long-terminal-repeat (2-LTR) circles. However, these determinations were made by either using PCR amplification of viral transcripts in bulk cell populations or utilizing the LTR-driving reporter cells that measure the synthesis of Tat. The intrinsic leakiness of LTR often makes the measurement of low-level viral transcription inaccurate. Since preintegration transcription also generates Rev, to eliminate the nonspecificity associated with the use of LTR alone we have developed a novel Rev-dependent indicator cell, Rev-CEM, to measure preintegration transcription based on the amount of Rev generated. In this report, using Rev-CEM cells, we demonstrate that preintegration transcription occurs on a much larger scale than expected. The transcribing population derived from nonintegrated viral DNA was comparable (at approximately 70%) to that derived from provirus in a productive viral replication cycle. Nevertheless, each nonintegrated viral DNA template exhibited a significant reduction in the level of transcriptional activity in the absence of integration. We also performed flow cytometry sorting of infected cells to identify viral templates. Surprisingly, our results suggest that the majority of 2-LTR circles are not active in directing transcription. It is likely that the nonintegrated templates are from the predominant DNA species, such as the full-length, linear DNA. Our results also suggest that a nonintegrating lentiviral vector can be as effective as an integrating vector in directing gene expression in nondividing cells, with the proper choice of an internal promoter
    corecore