3,693 research outputs found

    Green Gasification Technology for Wet Biomass

    Get PDF
    The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created.Keywords: energy, gasification, sustainable, wet biomas

    A Comment on the Implementation of the Ziggurat Method

    Get PDF
    We show that the short period of the uniform random number generator in the published implementation of Marsaglia and Tsang's Ziggurat method for generating random deviates can lead to poor distributions. Changing the uniform random number generator used in its implementation fixes this issue.

    Physically-Realizable Uniform Temperature Boundary Condition Specification on a Wall of an Enclosure: Part II – Problem Solution

    Get PDF
    Temperature measurements along one side of the rectangular plate showed severe temperature non-uniformity along one side of a wall of a cubical experimental apparatus where the uniform temperature was physically desired. Despite proper planning and analyses, this non-uniformity was high enough that a benchmark study could not be carried out to the desired accuracy of about one percent error. This paper presents and extends analyses made previously based on the modifications to the original design of the apparatus to reduce the temperature non-uniformity on the wall by adding an auxiliary heater around a wall where the uniform temperature was desired. A detailed mathematical analysis shows significant reduction in temperature non-uniformity from about four percent (based on the initial design) to less than one percent (for the modified design). By examining the temperature difference between two locations on the plate, the predicted temperature difference obtained through mathematical analyses show excellent agreement with the measured temperature difference. The temperature non-uniformity along the boundary of a wall was reduced to less than one percent of the overall temperature difference

    Physically-Realizable Uniform Temperature Boundary Condition Specification on a Wall of an Enclosure: Part I – Problem Investigation

    Get PDF
    Designing an experimental apparatus requires considerable amount of planning. Despite proper planning, one can easily overlook a design such as the standard uniform temperature boundary condition applied to all or portion of a wall of an experimental apparatus. Although this boundary condition is mathematically simple and precise, achieving it physically may not be that simple. This paper addresses one such three-dimensional natural convection heat transfer apparatus that was designed to measure benchmark Nusselt numbers at various Rayleigh numbers with uniform temperatures specified at two walls of the enclosure. It was found that the effect of thermal spreading/constriction resistance on one wall where this uniform temperature condition was prescribed was significant, and as a result, the uniform temperature profile based on the initial design was not physically achieved. In support of this non-uniform temperature observation, this paper presents a thermal resistance model of a plate (which is a portion of this overall heat transfer apparatus) to explain the observed temperature non-uniformity. The results obtained from the current model are validated with measured data, and in terms of a temperature difference between two locations on the plate, the approximate analytical solution is well within the experimental error of 0.03K

    GW190412: measuring a black-hole recoil direction through higher-order gravitational-wave modes

    Full text link
    General relativity predicts that gravitational waves (GWs) carry linear momentum. Consequently, the remnant black hole of a black-hole merger can inherit a recoil velocity or ``kick'' of crucial implications in, e.g, black-hole formation scenarios. While the kick magnitude is determined by the mass ratio and spins of the source, estimating its direction requires a measurement of the two orientation angles of the source. While the orbital inclination angle is commonly reported in GW observations, the azimuthal one has been to date ignored. We show how the presence of more than one GW emission mode allows constraining this angle and, consequently, determines the kick direction in a real GW event. %We show that the higher-order mode content GW190412 enables the determination of both these angles and, consequently, the kick direction. We analyse the GW190412 signal, which contains higher-order modes, with a numerical-relativity surrogate waveform model for black-hole mergers. We find that while GW190412 is barely informative about the kick magnitude, we can constrain its direction. This forms angles θKL-100M=2811+23deg\theta_{KL}^{\text{-100M}}=28^{+23}_{-11}\,\deg with the orbital angular momentum defined at a reference time tref=100Mt_{\rm ref}=-100\,M before merger (being preferentially kicked upwards), θKN=3712+15deg\theta_{KN}=37^{+15}_{-12}\,\deg with the line-of-sight and ϕKN-100M=4641+32deg\phi_{KN}^{\text{-100M}}=46^{+32}_{-41}\,\deg with the projection of the latter onto the former, all at the 68%68\% credible level. We briefly discuss the potential application of this type of measurement for multi-messenger observations of black-hole mergers occurring in Active Galactic Nuclei.Comment: 8 pages, 4 figure

    A monte-carlo floating-point unit for self-validating arithmetic

    Full text link
    Monte-Carlo arithmetic is a form of self-validating arith-metic that accounts for the effect of rounding errors. We have implemented a floating point unit that can perform ei-ther IEEE 754 or Monte-Carlo floating point computation, allowing hardware accelerated validation of results during execution. Experiments show that our approach has a mod-est hardware overhead and allows the propagation of round-ing error to be accurately estimated

    gramEvol: Grammatical Evolution in R

    Get PDF
    We describe an R package which implements grammatical evolution (GE) for automatic program generation. By performing an unconstrained optimization over a population of R expressions generated via a user-defined grammar, programs which achieve a desired goal can be discovered. The package facilitates the coding and execution of GE programs, and supports parallel execution. In addition, three applications of GE in statistics and machine learning, including hyper-parameter optimization, classification and feature generation are studied
    corecore