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Abstract 
 
Designing an experimental apparatus requires considerable amount of planning. Despite proper 
planning, one can easily overlook a design such as the standard uniform temperature boundary 
condition applied to all or portion of a wall of an experimental apparatus. Although this 
boundary condition is mathematically simple and precise, achieving it physically may not be that 
simple. This paper addresses one such three-dimensional natural convection heat transfer 
apparatus that was designed to measure benchmark Nusselt numbers at various Rayleigh 
numbers with uniform temperatures specified at two walls of the enclosure. It was found that the 
effect of thermal spreading/constriction resistance on one wall where this uniform temperature 
condition was prescribed was significant, and as a result, the uniform temperature profile based 
on the initial design was not physically achieved. In support of this non-uniform temperature 
observation, this paper presents a thermal resistance model of a plate (which is a portion of this 
overall heat transfer apparatus) to explain the observed temperature non-uniformity. The results 
obtained from the current model are validated with measured data, and in terms of a temperature 
difference between two locations on the plate, the approximate analytical solution is well within 
the experimental error of 0.03K.  
 
Keywords: Thermal constriction/spreading resistance, uniform temperature condition,    

analytical solution 
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1.   Introduction 
 
Heat conduction within a plate that is convectively cooled on one surface and subjected to a non-
uniform heat flux over its opposite surface occurs in many engineering applications.  These 
occur, for example, in solar collector plates, in radiative cooling of panels on satellites or space 
crafts, and in microelectronic circuit boards. What is important in these applications is how 
effectively heat travels from one part of the boundary onto another part of the boundary via heat 
conduction so that heat can be either used or removed. 
 
In the microelectronics industry, for one, the effectiveness of heat dissipation from electronic 
components (e.g., power transistors and chips) to heat spreading plates (e.g., circuit boards and 
heat sinks) is very important. In analyzing the effectiveness of heat dissipation, thermal 
resistance is modeled, and in particular, thermal spreading (or constriction) resistance is 
analyzed as it may be a dominant term in the overall thermal resistance of a microelectronic 
board. 
 
One of the early investigations of thermal resistance in semiconductor devices was analyzed by 
Kennedy (1960).  Analytical solutions for axisymmetric geometry with uniform heat flux source 
on a finite cylinder were derived. However, because of the assumption of an isothermal condition 
on the heat sink side, many practical problems were not properly modeled. For thin plates and 
small Biot numbers, Kennedy (1960) under-predicted spreading resistances by an order of 
magnitude (Lee et al. (1995)). 
 
An approximate, simple closed-form solution for calculating spreading resistances for a circular 
and square source placed on a rectangular plate was derived by Song et al. (1994).  This 
approximation is based on the analytical solutions obtained by Lee et al. (1995), and the simple 
solution was within 10% of the analytical solution over a wide range of parameters suitable for 
microelectronics applications.  Lee (1998) also reports that errors became large for cases where 
large aspect ratios for the rectangular source and plate were analyzed. 
 
Analytical expressions for calculating spreading resistance and surface temperature field were 
derived by Ellison (2003) for non-circular source and spreader plate by solving a three-
dimensional steady-state heat conduction equation. Dimensionless spreading resistances were 
presented as a function of Biot number, projected heating area, and dimensionless thickness.  
Yovanovich et al. (1999) and Muzychka et al. (2003) also presented three-dimensional models 
for analyzing thermal spreading resistances for multilayer plates and for various heat source 
configurations. 
 
Instead of analyzing thermal resistance analytically, Nelson and Sayers (1992) used a control 
volume based finite difference method for studying spreading resistances of both axisymmetric 
and planar models. Bhatt and Rhee (2006) performed a systematic study on the effects of thermal 
spreading resistance on the overall resistance from contact to ambient for square and rectangular 
heat sources and spreading plates using commercial software. They found that numerical 
simulation can be used to perform such type of thermal analysis within 10% of exact solutions. 
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Thermal spreading resistances of semi-infinite media, such as a source on a half-space or a semi-
infinite heat-flux tube, were also studied (for example, Mikic (1967), Cooper et al. (1969), and 
Yovanovich and Schneider (1977)). 
 
The motivation behind this paper is based on analyses conducted for the design of a physically-
realizable boundary condition specification on a three-dimensional experimental apparatus for 
natural convection studies (Leong (1996), and Leong et al. ((1998) and (1999)).  In this work, a 
cubical enclosure was built to measure benchmark Nusselt numbers Nu for a wide range of 
Rayleigh numbers Ra.  In measuring Nu, two different temperatures on the corresponding two 
opposing main walls (plates) of the enclosure were designed to be constant across each of the 
entire face, while the temperature on the four remaining walls (called the sidewalls) vary linearly 
between the two main walls, as depicted in Figure 1. During the initial phase of testing, 
temperature measurements along the sidewall in x-direction confirmed a linear temperature 
variation; however, the temperature at the contact region (see Figures 2 and 3a), where the 
sidewall meets the main wall, was not equal to the temperatures measured near the center of the 
main wall (Leong (1996)).  As a result, further design changes were required to reduce the 
temperature non-uniformity to an acceptable level between the contact region and the entire main 
wall, so that a constant temperature profile can be deemed appropriate for their experimental 
natural convection study. 

 
The physical layout of the problem analyzed in this paper is defined in Figure 2, which is based 
on the experimental apparatus designed by Leong (1996). A similar problem analyzed by 
Schneider et al. (1980) was carried out, but the current mathematical problem is a general 
problem based on a mixed boundary condition specification.  That is, compared to the present 
physical problem (shown in Figure 3b), Schneider et al. (1980) assumes that the entire opposite 
boundary is in contact with an ambient fluid. 
 

T = Th – (Th – Tc) x/L 

T = Th – (Th – Tc) x/L 

y 

Tc 
Th 

 
Figure 1.  A sketch of cubical enclosure with its thermal boundary 

conditions 
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In this paper, an approximate analytical solution to a mixed boundary value problem is 
presented, and then this approximate solution is applied to obtain a thermal resistance model.  
The approximate analytical solution to the problem is verified against solutions presented by 
Schneider et al. (1980), and the present solution is also compared to converged finite-element 
solutions.  Specifically, the objectives of this paper are: to fully understand the reasons for the 
temperature non-uniformity on the main hot plate; and to show that the approximate analytical 
solution presented herein supports the measured temperature difference on the main hot plate as 
observed by Leong (1996). 
 

 
Figure 2.  Original cubical experimental apparatus 

 
2.   Problem Description 
 
       Mathematical Statement of the Problem 
 
Simplification to the problem can be achieved by considering the left-half portion of the main 
hot plate due to symmetry, and Figure 3 shows the geometry to be considered for analysis.  In 
addition, groups of circulating tube banks on the top/upper portion of the plate were “lumped” 
into two groups of single tube bank as shown on Figure 3A. 
 
As a result, a Cartesian coordinate system is established with the origin located at the lower left 
corner of the plate. The width and the thickness of the plate are denoted by b and c, respectively.  
The contact region where the heat flux distribution q(x) is prescribed spans 2a at a distance e 
from the y-axis. Two portions of the upper surface having widths of d1 and d2 are in contact with 
fluid temperatures Tf1 and Tf2, respectively, and with convective heat-transfer coefficients h1 and 
h2, respectively. The remaining surfaces are impervious to heat transfer (that is, they are assumed 
adiabatic). Although in reality the bottom-interior surface of the main hot plate experiences 
natural convective heat flux, because the convective heat flux is so small compared to q(x), it is 
neglected for the purpose of this study.  
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The governing differential equation is the Laplace’s equation (steady-state heat conduction in a 
homogeneous, isotropic conductor with thermal conductivity k and no internal heat generation): 
 

0
2

2

2

2









y

T

x

T
,                                                                                                                   (1) 

 
which is subject to the boundary conditions given by: 
 

x = 0,   0 ≤ y ≤ c:  0



x

T
,                     (2a) 

x = b,   0 ≤ y ≤ c:  0



x

T
,   (2b) 

y = 0,   0 ≤ x ≤ e:  0



y

T
, e ≤ x ≤ e + 2a:  

k

xq

y

T )(





,  e + 2a ≤ x ≤ b:  0



y

T
,     (2c) 

Figure 3.  (A)  A sketch of the physical problem, and  
                 (B)  A general representation of the Problem with defined 

parameters 

 y,  

 x,  

q(x)

 d1 

  e 

 d2

  2a

 h1  h2
 Tf 1  Tf 2

  c

  b

circulating water
 soldered tubes

 main wall/plate 

 sidewall 

 contact region 

(A)

(B)

 plate 
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y = c,  0 ≤ x ≤ d1:   11 ,
1

fTcxTh
ky

T





,  d1 ≤ x ≤ b – d2:  0



y

T
,               

                                                        b – d2 ≤ x ≤ b:   22 ,
1

fTcxTh
ky

T





.             (2d) 

 
3.   Approximate Analytical Solution 
 
In solving Equation (1), the following dimensionless variables are introduced: 
 

Q

TTkL
T

b

y

b

x f )(
,, *


  ,                                               (3) 

 
where 
 

2211

222111

hdhd

ThdThd
T ff

f 


                                                                         (4) 

 
is the weighted-average of the fluid temperature, and 
 





ae

e
dxxqLQ

2
)(                                                           (5) 

 
is the total heat flow due to q(x) over length L (into the page). Additional dimensionless 
parameters are introduced: 
 

b

e

b

d

b

d

b

c

b

a
  ,,,, 2

2
1

1 ,                                  (6) 

 
and from Equation (3), the dimensionless fluid temperatures are given by 
  

   
Q

TTkL
T

Q

TTkL
T ff

f
ff

f





 2*

2
1*

1 , ,                                              (7) 

 
where the average fluid temperature (Equation (4)) expressed in terms of dimensionless variables 
is 
 

2211

222111

BiBi

TBiTBi
T ff

f 





 ,                                                               (8) 

 
and the Biot numbers/moduli are defined by 
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k

bh
Bi

k

bh
Bi 2

2
1

1 ,   .                                                                      (9) 

 
The main difficulty in obtaining an exact analytical temperature solution to Equation (1) based 
on the boundary conditions (given in Equations (2)) is due to the fact that a Robin (mixed) 
boundary condition (see boundary conditions along y = c, which is given in Equation (2d)) is 
imposed on one side of the plate where two subsections are in contact with the fluid (the 
conduction-convection condition). In Appendix A, the difficulty in obtaining an exact analytical 
solution is identified, and the orthogonality condition of the basis function is assumed to apply 
across each of these two subsections. Based on this assumption, an approximate analytical 
temperature solution was obtained, and is given by 
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4.   Thermal Resistance Model 
 
The overall thermal resistance is defined by 
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Q
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where 
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is the average temperature across the contact region, or in dimensionless form, 
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Equation (12) can be represented as dimensionless resistance defined by 
 

 
Q
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which turns out to be simply the average dimensionless temperature over the contact region 
(Equation (13b)): 
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Substituting the dimensionless temperature solution, Equation (10), into Equation (15), the 
overall thermal resistance is 
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where  , n , n , and n  are defined in Equation (11). The dimensionless overall thermal 

resistance has the same dependent variables as the dimensionless temperature field, except that it 
is independent of the two spatial coordinates ξ and . 
 
In Equation (16), the first term  is comprised of resistances due to conduction across the plate 

thickness c,  *
condR , and due to convection at the solid-fluid 

interfaces,   2211
* 1 BiBiRconv   ,  (Equation (11a)).  The second and third terms are 

resistances due to thermal spreading/constriction *
/ csR  which is given by 
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Furthermore, Equation (17) is comprised of two terms; the first term is resistance due to 
spreading/constriction of heat flow at the solid-fluid interfaces; and the second term is the effect 
of spreading as heat is dispersed from the contact region to the remaining sections of the plate. 
 
5.   Special Cases for the Heat Flux Profiles 
 
In this section, three different heat flux distributions will be used to quantify thermal spreading 
resistance.  As suggested by Schneider et al. (1980), the heat flux profiles to be considered are 
given by 
 

 muqxq 2
0 1)(  ,           m = -1/2, 0, 1/2,                                             (18) 

 
where q0 is a constant heat flux/parameter, and u is the local co-ordinate system where the heat 
flux distribution is prescribed.  That is, 
 

    1
1

1
1

 


ex
a

u .                                                       (19) 

 
These heat flux distributions, given in Equation (18), are shown graphically in Figure 4. 

 
 
For convenience, we define ),( nF by: 

 

     








2
cos, dnq

Q

bL
Fn .                                                       (20) 

 

x

 q(x) 

0q

m = ½

m = –½ 

m = 0 

e e + a e + 2a

Figure 4. Three Cases of Heat Flux Distribution 
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Based on the heat flux profiles of Equation (18), Table 1 lists the functional forms of Equation 
(20), for m = -1/2, 0, and 1/2 in terms of trigonometric and Bessel functions, )(0 J and )(1 J  

(Gradshteyn and Ryzhik (1965)). 
 

  Table 1. Functional forms of ),( nF  based on the choice of m 

m ),( nF  )(nF , for η = -ε 

-1/2      nnJ cos0   nJ 0  

0       nnn cossin     nnsin  

1/2       nnnJ cos2 1     nnJ12  
 
 
6.   Results and Discussion 
 
      Verification of the Present Solution 
 
To assess whether the approximate analytical solutions represented by Equations (10), (16), and 
(17) agree well with existing solutions, a set of problem presented by Schneider et al. (1980) is 
considered.  The problem definition to be analyzed is shown in Figure 5 below. 

 
 
Based on Figure 5 the following parameters introduced in this paper are matched to those 
parameters considered by Schneider et al. (1980): 
 

a) 1 =  = 1, 2 = 0 (i.e., d1 = b, d2 = 0); 
b) Bi1 = Bi (i.e., h1 = h); 

c) *
1fT  = 0 (i.e., 1fT  = fT  = fT ), 

d)  = - (i.e., half of the heat flux distribution). 
 
Under these specifications, it can be shown that, from Equation (11b) and (11c), n = 0 and n = 

0, respectively. The dimensionless temperature distribution *T , the dimensionless overall thermal 

Figure 5.  Problem Analyzed by Schneider et al. (1980)

 q(x) 

h1 = h 

b c

a

Tf1 = Tf 
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resistance *
oR , and the dimensionless thermal spreading/constriction resistance *

/ csR  reduce to the 

exact analytical solutions to this boundary value problem, and all coincide with the analytical 
solutions provided by Schneider et al. (1980). The corresponding exact analytical solutions are 
given by 
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respectively, where 
 

Bi

1
 ,                                           (24a) 

 
   
   


nBinn

nBinn
n coshsinh

sinhcosh




 ,                               (24b) 

 
and the functional forms of )(nF are also listed in Table 1. 

 
The effect of thermal spreading/constriction resistance for this problem is discussed in detail by 
Schneider et al. (1980). In summary, they found that the thermal constriction resistance is 
relatively insensitive to the applied heat flux profile. They also found that the maximum thermal 
constriction resistance is obtained for the combination where both Bi and  are small; 
conversely, the minimum thermal constriction resistance is obtained for the combination where 
Bi is large and  is small.  Their study was based on the following ranges of parameters: 0.01  
Bi  100, 0.05    2.0, and 0.01    1.0. 
 
7.   Verification of the Present Approximate Analytical Solution 
 
Based on the problem definition of Figure 3b, the physical dimensions are obtained from Leong 
(1996): 2a = 3.2 mm, b = 78 mm, c = 9.53 mm, d1 = d2 = d = 22 mm, and e = 11 mm.  As a result, α 
= 0.122, 1 = 2 =  = 0.282,  = 0.141, and  = 0.0205.  Tests of the experimental apparatus were 
conducted at a fixed circulating water flow rate of 1.17 litres/min in each tube at the upper two 

portions of the plate, so it is assumed that 1fT = 2fT = fT = fT  (that is, *
1fT = *

2fT = 0) and that Bi1 = 

Bi2 = Bi (since h1 = h2 = h).  The plate is made out of copper with a thermal conductivity value of 
k = 388 W/(mK). 
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Under these specifications, the approximate analytical solutions to Equations (10), (16), and (17) 
are given by 
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respectively, where 
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and, from Equation (11e), 
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What remains unanswered thus far is which shape of the heat flux distribution along the contact 
region is adequate before comparing the approximate analytical solution to the measured data. 
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Based on the following two observations and findings, a uniform heat flux profile, i.e. m = 0, can be 
assumed along the contact region: 
 
1. Although the three heat flux distributions are distinctly different, thermal spreading resistances 

do not depend strongly on the shape of the heat flux profiles over a wide range of Bi values as 
shown in Figure 6.  (This was also reported by Schneider et al. (1980).) If the actual heat flux 
distribution falls within the extreme cases of m = -½ and m = ½, the uniform heat flux profile 
will provide a good approximation. 

 
2. Along the sidewall, the Biot number Bit  hnct/k can be determined to justify the nature of the 

heat flux profile.  These values were used to calculate Bit :  hnc = 25 W/(m2K) for high gaseous 
natural convection heat transfer, t = 2a = 3.2 mm, and k = 388 W/(mK), which gives Bit = 
0.0002 << 0.1.  Since this value is small, the temperature gradient across the thickness of the 
sidewall is negligible, and thus the assumption of uniform heat flux profile along the sidewall is 
valid. 

 

 
Figure 6.  Thermal spreading/constriction resistance based on the actual configuration 

(Leong (1996)) for three different heat flux profiles (m = -1/2, 0, 1/2). 
 
From Equations (26), (27) and (28a), the effects of Bi on thermal resistances due to conduction 

*
condR , convection *

convR , spreading/constriction *
/ csR , and overall *

oR  are calculated, and are plotted 

in Figure 7.  It is clear that the overall thermal resistance possesses two asymptotes: as Bi  0, *
oR  

approaches   BiRconv 21*  ; and for Bi >> 1, *
oR  approaches *

/ csR .  It is also apparent from Figure 

7 that in order to reduce the thermal spreading/constriction resistance, it is suitable to increase Bi to 
values greater than 1, but the effect is relatively weak. 

*
/ csR  
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In studying the effects of thermal spreading/constriction resistance from an experimental point of 
view, four cases were considered.  In each case, different sets of the main wall (plate) temperatures, 
Th and Tc, were prescribed (Leong (1996)).  As a result, each of the four cases has a slightly 
different Bi value.  In each case, a series of temperature differences, sT ' , was measured between 
ξ1 = 0.162 (x1 = 12.6 mm) and ξ2 = 0.75 (x2 = 58.5 mm) along ζ = 0 (y = 0), using a thermopile 
embedded in the plate. Then, a mean value, T , of these temperature differences was obtained by 
averaging over 120 (δT) measurements. Also, the uniform heat flux, q0, for each case was 
determined using Fourier’s law based on the temperature gradient measurements along the sidewall.  
According to Leong (1996), the mean values of measured temperature differences are considered to 
have negligible precision error, but with a bias error of ± 0.03 K. 
 

 
Figure 7.  Contribution of Thermal Resistances Due to Conduction, Convection and 

Spreading/Constriction 
 
A comparison of the approximate analytical temperature solution, Equation (25), with the finite-
element method (FEM) temperature solution based on the “fine” grid (see Appendix B) shows that 
(for the practical range of interest 1.2 ≤ Bi ≤ 5 and 0 ≤ - qo ≤ 200 kW/m2), Equation (25) is found to 
be less than 0.7% of the FEM based “fine” grid numerical solution.  For this reason, the present 
approximate analytical solution, Equation (25), was used in analysing the temperature non-
uniformity along the bottom plate, and used in analysing the thermal resistance of the plate. To 
validate the present approximate analytical solution, measured q0 and Bi values are used as inputs to 
obtain the temperature difference, T , derived from the approximate solution, Equation (25): 
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Table 2.  Comparison of results between measured and present model 

 
Case T+ 

(K) 
q0

+ 
(W/m2) 

Bi+ T  
(K) 

T  
(K) 

  TT   
(K) 

 TT /  

1 4.08 -11000 1.373 0.164 0.179 0.015 4.02% 
2 11.9 -32100 1.484 0.521 0.512 -0.009 4.38% 
3 21.2 -57500 1.695 0.869 0.884 0.015 4.10% 
4 31.2 -84800 1.703 1.292 1.302 0.010 4.14% 

+ Experimental (Leong(1996)); ++ Present Model 
 
For comparison, Table 2 lists the measured temperature differences, T , and the temperature 
differences based on the present model, T , Equation (29).  Among the four cases measured, the 
largest difference between the measured data and the results based on the present model is 0.015 K, 
and are in excellent agreement with the experimental data.  Also, shown in the table, the 
approximate analytical results are well within the experimental uncertainty of 0.03 K. 

 
Figure 8.  Dimensionless temperature profile T*(versus dimensionless horizontal distance 
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Moreover, Table 2 lists the measured Bi’s for this problem, and they fall within the range 
( 21  Bi ) where the effect of thermal spreading/constriction resistance is important.  As shown in 
Figure 7, the effect of spreading/constriction resistance is approximately 46% of the overall thermal 
resistance. 
 
To illustrate the effect of thermal spreading/constriction resistance on the plate on the temperature 
field, the dimensionless temperature profiles along the bottom boundary of the plate (y = 0 or  = 0) 
are shown in Figure 8 for the four experimental cases (corresponding to the four Bi number cases).  
These temperature profiles show dramatic temperature non-uniformity near the contact and 
surrounding regions of the plate. 
 
Although the measured temperature difference, T , was about 4% of the overall temperature 
difference of the enclosure, T (= Th – Tc), the design was considered to be a failure as compared to 

the main objective of %1/ TT  for the benchmark experimental study. This meant that a 

redesign of the apparatus had to be made in order to meet the main objective of the study.  A 
second part of this paper (Lee and Leong (2012)) presents a methodology to reduce the 
temperature non-uniformity from about 4% to less than 1% error. 
   
8.   Concluding Remarks 
 
Thermal spreading/constriction resistance in a plate with a non-uniform heat flux region on one 
surface and two convectively cooled subsections on the opposite surface has been analytically 
investigated.  For this general mixed boundary value problem, an approximate analytical solution 
is obtained for temperature, overall thermal resistance, and thermal spreading/constriction 
resistance.  In fact, the present solution is exact with an existing solution in literature. A 
comparison between the approximate analytical temperature solutions with the numerical finite-
element temperature solutions shows that for the geometry of the plate and for the practical range 
of interest 1.2 ≤ Bi ≤ 5 and 0 ≤ - qo  ≤ 200 kW/m2, the approximate analytical solution is less than 
0.7% of the “fine” finite-element numerical grid based solution. 
 
As part of one of two main objectives of this paper, it was determined that thermal 
spreading/constriction resistance strongly affects the temperature distribution surrounding the 
contact region for Bi values greater than one.  From the four experimental cases, measured 
temperature differences between the contact region and a location on the plate away from the 
contact region show obvious temperature non-uniformity in the plate.  The present analytical 
model is in excellent agreement with measured data, and is well within the uncertainty of the 
measurements. 
 
Due to the general form of the present model, it can be adapted to analyzing a number of similar 
engineering applications. The approximate analytical solution can serve to verify any computer 
codes dealing with heat conduction simulation. 
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Nomenclature 
 
a = half-width of contact at sidewall, m 
b = width of plate, m 
 = Biot number/modulus, hb/k, or Rcond /Rconv 

c = plate thickness, m 
d = fluid contact width, m 
e = location of sidewall heat flux region, m 
Fn(,) = functional form for sidewall heat flux profile 
h = heat transfer coefficient, W/(m2K) 
k = thermal conductivity, W/(mK) 
L = length of plate into the page, m 
m = shape parameter for heat flux profile, q(x) 
Q = total heat flow at sidewall, Equation (5), W 
q(x) = heat flux profile of the sidewall, W/m2 
R = thermal resistance, K/W 
Ro = overall/total thermal resistance, K/W 
Rs/c = thermal spreading/constriction resistance, K/W 
T = temperature, K 
T  mean temperature, K 
u = local co-ordinates 
x, y = Cartesian co-ordinate 
 dimensionless thickness, c/b
 dimensionless fluid contact width, d/b 

nnn  ,, function/parameter 

 temperature difference, T(ξ2, 0) – T(ξ1, 0), K 
 dimensionless half contact length, a/b 
 dimensionless conduction and convection resistances 
 dimensionless distance to sidewall location, e/b 

nin ,,  function/parameter 

 dimensionless co-ordinate, x/b and y/b 
Superscripts 
* = dimensionless variable 
Subscripts 
1, 2 = subsection of circulating fluid 
f = fluid 
o = sidewall (or contact), overall/total, or otherwise noted 
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Appendix A 
 
The main difficulty in solving this boundary value problem analytically is due to the mixed 
boundary condition along the portion of the boundary along y = c, where the solid is in contact 
with the fluid (as defined in the boundary condition given in Equation (2d)). 
 
In the derivation of the solution via the method of separation of variables, the solution 
methodology hinges on the key idea that the orthogonality condition applies along the two sub-
sections where the fluid is in contact with the solid.  That is, after applying the mixed boundary 
condition at y = c, given by Equation (2d), the form of the Fourier series solution is set up to as 
follows: 
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where )( cf n is a function involving all Fourier expansion coefficients introduced in the 

problem, and ),( cxT is given by: 
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)cos()(),(
n

nn xcfcxT  .                                                                   (A.2) 

 
One approach for obtaining the Fourier expansion coefficients is to substitute Equation (A.2) into 
the piece-wise boundary condition, Equation (A.1), multiply both sides by )cos( xm , and then 

integrate both sides with respect to x from x = 0 to b.  As a result, this is given by: 
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Using the orthogonality condition for n ≠ m, the left-hand side of Equation (A.3) simplifies to 
 


b

mmm dxxcf
0

2 )(cos)(  ,                                                       (A.4) 

 
for n = m, which can be easily integrated. But the right-hand side of Equation (A.3) does not 
simplify since orthogonality in each of the two terms involving definite integrals along the two 
sub-sections given by 
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                             (A.5) 

 
does not apply.  That is, across these two sub-intervals, the Fourier series may still remain as an 
infinite series. 
 
Instead, a solution consistent with the Fourier series expansion solution is sought, and it is 
assumed here that the orthogonality condition exists along these two sub-intervals.  That is, the 
two definite integrals in Equation (A.5) are assumed zero for n ≠ m.  This way, all Fourier 
coefficients introduced are aligned, and are obtained by systematically applying the boundary 
conditions. 
 
In APPENDIX B, a comparison of the approximate analytical temperature solution based on this 
orthogonality assumption with a grid-independent/converged Finite-Elemement Method (FEM) 
numerical solution is presented. 
 

APPENDIX B 
 
To demonstrate the accuracy of the orthogonality assumption/simplification along the two sub-
sections on the temperature field, a comparison of the approximate analytical temperature 
solution based on this assumption with the finite-element method (FEM) temperature solution is 
presented for the practical range of interest given by 1.2 ≤ Bi ≤ 5 and 0 ≤ - qo  ≤ 200 kW/m2.  A 
standard FEM software was used (Klein et al. (2001)), and for all comparisons presented, a 
uniform (constant) heat flux profile was assumed across the contact region. Before the 
comparative study was conducted, nine nodal temperatures were identified so that temperature 
comparisons can be made. See Figure B.1 below. 
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Figure B.1:  Geometry of the Problem with Identified Nodes for Temperature Solution Comparisons. 
 
Also, in selecting a grid independent temperature for this comparative study, two different grids 
were chosen, where the total number of nodes used in the study were 263 nodes (“coarse”) and 
965 (“fine”).  As the total number of grids increased from “coarse” to “fine”, the temperature 
values at these nine nodes were all less than 0.07% of the “fine” grid temperature values for the 
practical range of interest 1.2 ≤ Bi ≤ 5 and 0 ≤ - qo  ≤ 200 kW/m2 (not shown here).  A third chosen 
“finer” grid was planned but was not chosen in this study because all FEM solutions based on 
these two grids were within less than 0.07% of the “fine” solution.  This “fine” grid was then 
used in the comparison of the approximate analytical temperature solution with the FEM based 
temperature solution. 
 
Presented in Table B.1 are the maximum temperature difference based on the fine FEM and the 
approximate analytical temperature solutions from each of the nine nodes.  In all of the cases 
studies, - qo  = 200 kW/m2 was considered, which is the highest heat flux considered1.  In all cases 
considered, the maximum differences for all the cases studied occurred in Node 3.  As shown in 
the table below, the approximate analytical temperature solutions for various Bi cases considered 
at each of the nine nodes are in excellent agreement (less than 0.7%) with the corresponding 
“fine” grid FEM numerical temperature solutions; for - qo  < 200 kW/m2, the differences will be 
lower than 0.7%. 
 
 Table B.1. Comparison of temperatures at node 3 between numerical and analytical solutions 

Bi Numerical Temperature 
Solution (ºC) 

Approximate Analytical 
Temperature Solution (ºC) 

Difference (%) 

1.2 16.67 16.78 -0.66 
1.3 16.89 17.00 -0.65 
1.4 17.08 17.19 -0.64 
1.5 17.24 17.35 -0.64 
2.0 17.83 17.94 -0.62 
3.0 18.45 18.57 -0.65 
4.0 18.78 18.90 -0.64 
5.0 18.98 19.10 -0.63 

 
                                                 
1 The maximum value of –qo = 200 kW/m2 was chosen to reflect a severe physical case.  To physically achieve this, a 
temperature difference between the hot and cold plates needs to be approximately 65 oC, which is very high. Although in the 
validation exercise the highest temperature difference presented is 31.2 oC (see Table 2), all of the experimental temperature 
difference cases considered by Leong (1996) were within 15 oC. The main reason for this was to ensure that the condition to the 
Boussinesq approximation is valid so that computational fluid dynamics (CFD) solutions can also be simulated and compared to 
the experimental results. 
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