9,722 research outputs found

    Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves

    Full text link
    We show that candidate contact binary asteroids can be efficiently identified from sparsely sampled photometry taken at phase angles >60deg. At high phase angle, close/contact binary systems produce distinctive lightcurves that spend most of the time at maximum or minimum (typically >1mag apart) brightness with relatively fast transitions between the two. This means that a few (~5) sparse observations will suffice to measure the large range of variation and identify candidate contact binary systems. This finding can be used in the context of all-sky surveys to constrain the fraction of contact binary near-Earth objects. High phase angle lightcurve data can also reveal the absolute sense of the spin.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in ApJ

    A search for magnetic fields on central stars in planetary nebulae

    Full text link
    One of the possible mechanisms responsible for the panoply of shapes in planetary nebulae is the presence of magnetic fields that drive the ejection of ionized material during the proto-planetary nebula phase. Therefore, detecting magnetic fields in such objects is of key importance for understanding their dynamics. Still, magnetic fields have not been detected using polarimetry in the central stars of planetary nebulae. Circularly polarized light spectra have been obtained with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory and the Intermediate dispersion Spectrograph and Imaging System at the William Herschel Telescope. Nineteen planetary nebulae spanning very different morphology and evolutionary stages have been selected. Most of central stars have been observed at different rotation phases to point out evidence of magnetic variability. In this paper, we present the result of two observational campaigns aimed to detect and measure the magnetic field in the central stars of planetary nebulae on the basis of low resolution spectropolarimetry. In the limit of the adopted method, we can state that large scale fields of kG order are not hosted on the central star of planetary nebulae.Comment: Paper accepted to be published in Astronomy and Astrophysics on 20/01/201

    Number of loops of size h in growing scale-free networks

    Full text link
    The hierarchical structure of scale-free networks has been investigated focusing on the scaling of the number Nh(t)N_h(t) of loops of size h as a function of the system size. In particular we have found the analytic expression for the scaling of Nh(t)N_h(t) in the Barab\'asi-Albert (BA) scale-free network. We have performed numerical simulations on the scaling law for Nh(t)N_h(t) in the BA network and in other growing scale free networks, such as the bosonic network (BN) and the aging nodes (AN) network. We show that in the bosonic network and in the aging node network the phase transitions in the topology of the network are accompained by a change in the scaling of the number of loops with the system size.Comment: 4 pages, 3 figure

    Increasing the reliability of fully automated surveillance for central line–associated bloodstream infections

    Get PDF
    OBJECTIVETo increase reliability of the algorithm used in our fully automated electronic surveillance system by adding rules to better identify bloodstream infections secondary to other hospital-acquired infections.METHODSIntensive care unit (ICU) patients with positive blood cultures were reviewed. Central line–associated bloodstream infection (CLABSI) determinations were based on 2 sources: routine surveillance by infection preventionists, and fully automated surveillance. Discrepancies between the 2 sources were evaluated to determine root causes. Secondary infection sites were identified in most discrepant cases. New rules to identify secondary sites were added to the algorithm and applied to this ICU population and a non-ICU population. Sensitivity, specificity, predictive values, and kappa were calculated for the new models.RESULTSOf 643 positive ICU blood cultures reviewed, 68 (10.6%) were identified as central line–associated bloodstream infections by fully automated electronic surveillance, whereas 38 (5.9%) were confirmed by routine surveillance. New rules were tested to identify organisms as central line–associated bloodstream infections if they did not meet one, or a combination of, the following: (I) matching organisms (by genus and species) cultured from any other site; (II) any organisms cultured from sterile site; (III) any organisms cultured from skin/wound; (IV) any organisms cultured from respiratory tract. The best-fit model included new rules I and II when applied to positive blood cultures in an ICU population. However, they didn’t improve performance of the algorithm when applied to positive blood cultures in a non-ICU population.CONCLUSIONElectronic surveillance system algorithms may need adjustment for specific populations.Infect. Control Hosp. Epidemiol. 2015;36(12):1396–1400</jats:sec

    Complexity transitions in global algorithms for sparse linear systems over finite fields

    Full text link
    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois Field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to changes in performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary to the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure

    Mean-Field and Anomalous Behavior on a Small-World Network

    Full text link
    We use scaling results to identify the crossover to mean-field behavior of equilibrium statistical mechanics models on a variant of the small world network. The results are generalizable to a wide-range of equilibrium systems. Anomalous scaling is found in the width of the mean-field region, as well as in the mean-field amplitudes. Finally, we consider non-equilibrium processes.Comment: 4 pages, 0 figures; reference adde

    The chaperone system in cancer therapies: Hsp90

    Get PDF
    : The chaperone system (CS) of an organism is composed of molecular chaperones, chaperone co-factors, co-chaperones, and chaperone receptors and interactors. It is present throughout the body but with distinctive features for each cell and tissue type. Previous studies pertaining to the CS of the salivary glands have determined the quantitative and distribution patterns for several members, the chaperones, in normal and diseased glands, focusing on tumors. Chaperones are cytoprotective, but can also be etiopathogenic agents causing diseases, the chaperonopathies. Some chaperones such as Hsp90 potentiate tumor growth, proliferation, and metastasization. Quantitative data available on this chaperone in salivary gland tissue with inflammation, and benign and malignant tumors suggest that assessing tissue Hsp90 levels and distribution patterns is useful for differential diagnosis-prognostication, and patient follow up. This, in turn, will reveal clues for developing specific treatment centered on the chaperone, for instance by inhibiting its pro-carcinogenic functions (negative chaperonotherapy). Here, we review data on the carcinogenic mechanisms of Hsp90 and their inhibitors. Hsp90 is the master regulator of the PI3K-Akt-NF-kB axis that promotes tumor cell proliferation and metastasization. We discuss pathways and interactions involving these molecular complexes in tumorigenesis and review Hsp90 inhibitors that have been tested in search of an efficacious anti-cancer agent. This targeted therapy deserves extensive investigation in view of its theoretical potential and some positive practical results and considering the need of novel treatments for tumors of the salivary glands as well as other tissues

    Trading interactions for topology in scale-free networks

    Full text link
    Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, γ=(γμ)/(1μ)\gamma' = (\gamma - \mu)/(1-\mu), describes how a shift of the standard exponent γ\gamma of the degree distribution P(q)P(q) can absorb the effect of degree-dependent pair interactions Jij(qiqj)μJ_{ij} \propto (q_iq_j)^{-\mu}. Replica technique, cavity method and Monte Carlo simulation support the physical picture suggested by Landau theory for the critical exponents and by the Bethe-Peierls approximation for the critical temperature. The equivalence of topology and interaction holds for equilibrium and non-equilibrium systems, and is illustrated with interdisciplinary applications.Comment: 4 pages, 5 figure
    corecore