9,722 research outputs found
Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves
We show that candidate contact binary asteroids can be efficiently identified
from sparsely sampled photometry taken at phase angles >60deg. At high phase
angle, close/contact binary systems produce distinctive lightcurves that spend
most of the time at maximum or minimum (typically >1mag apart) brightness with
relatively fast transitions between the two. This means that a few (~5) sparse
observations will suffice to measure the large range of variation and identify
candidate contact binary systems. This finding can be used in the context of
all-sky surveys to constrain the fraction of contact binary near-Earth objects.
High phase angle lightcurve data can also reveal the absolute sense of the
spin.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in ApJ
A search for magnetic fields on central stars in planetary nebulae
One of the possible mechanisms responsible for the panoply of shapes in
planetary nebulae is the presence of magnetic fields that drive the ejection of
ionized material during the proto-planetary nebula phase. Therefore, detecting
magnetic fields in such objects is of key importance for understanding their
dynamics. Still, magnetic fields have not been detected using polarimetry in
the central stars of planetary nebulae. Circularly polarized light spectra have
been obtained with the Focal Reducer and Low Dispersion Spectrograph at the
Very Large Telescope of the European Southern Observatory and the Intermediate
dispersion Spectrograph and Imaging System at the William Herschel Telescope.
Nineteen planetary nebulae spanning very different morphology and evolutionary
stages have been selected. Most of central stars have been observed at
different rotation phases to point out evidence of magnetic variability. In
this paper, we present the result of two observational campaigns aimed to
detect and measure the magnetic field in the central stars of planetary nebulae
on the basis of low resolution spectropolarimetry. In the limit of the adopted
method, we can state that large scale fields of kG order are not hosted on the
central star of planetary nebulae.Comment: Paper accepted to be published in Astronomy and Astrophysics on
20/01/201
Number of loops of size h in growing scale-free networks
The hierarchical structure of scale-free networks has been investigated
focusing on the scaling of the number of loops of size h as a function
of the system size. In particular we have found the analytic expression for the
scaling of in the Barab\'asi-Albert (BA) scale-free network. We have
performed numerical simulations on the scaling law for in the BA
network and in other growing scale free networks, such as the bosonic network
(BN) and the aging nodes (AN) network. We show that in the bosonic network and
in the aging node network the phase transitions in the topology of the network
are accompained by a change in the scaling of the number of loops with the
system size.Comment: 4 pages, 3 figure
Increasing the reliability of fully automated surveillance for central line–associated bloodstream infections
OBJECTIVETo increase reliability of the algorithm used in our fully automated electronic surveillance system by adding rules to better identify bloodstream infections secondary to other hospital-acquired infections.METHODSIntensive care unit (ICU) patients with positive blood cultures were reviewed. Central line–associated bloodstream infection (CLABSI) determinations were based on 2 sources: routine surveillance by infection preventionists, and fully automated surveillance. Discrepancies between the 2 sources were evaluated to determine root causes. Secondary infection sites were identified in most discrepant cases. New rules to identify secondary sites were added to the algorithm and applied to this ICU population and a non-ICU population. Sensitivity, specificity, predictive values, and kappa were calculated for the new models.RESULTSOf 643 positive ICU blood cultures reviewed, 68 (10.6%) were identified as central line–associated bloodstream infections by fully automated electronic surveillance, whereas 38 (5.9%) were confirmed by routine surveillance. New rules were tested to identify organisms as central line–associated bloodstream infections if they did not meet one, or a combination of, the following: (I) matching organisms (by genus and species) cultured from any other site; (II) any organisms cultured from sterile site; (III) any organisms cultured from skin/wound; (IV) any organisms cultured from respiratory tract. The best-fit model included new rules I and II when applied to positive blood cultures in an ICU population. However, they didn’t improve performance of the algorithm when applied to positive blood cultures in a non-ICU population.CONCLUSIONElectronic surveillance system algorithms may need adjustment for specific populations.Infect. Control Hosp. Epidemiol. 2015;36(12):1396–1400</jats:sec
Complexity transitions in global algorithms for sparse linear systems over finite fields
We study the computational complexity of a very basic problem, namely that of
finding solutions to a very large set of random linear equations in a finite
Galois Field modulo q. Using tools from statistical mechanics we are able to
identify phase transitions in the structure of the solution space and to
connect them to changes in performance of a global algorithm, namely Gaussian
elimination. Crossing phase boundaries produces a dramatic increase in memory
and CPU requirements necessary to the algorithms. In turn, this causes the
saturation of the upper bounds for the running time. We illustrate the results
on the specific problem of integer factorization, which is of central interest
for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure
Mean-Field and Anomalous Behavior on a Small-World Network
We use scaling results to identify the crossover to mean-field behavior of
equilibrium statistical mechanics models on a variant of the small world
network. The results are generalizable to a wide-range of equilibrium systems.
Anomalous scaling is found in the width of the mean-field region, as well as in
the mean-field amplitudes. Finally, we consider non-equilibrium processes.Comment: 4 pages, 0 figures; reference adde
The chaperone system in cancer therapies: Hsp90
: The chaperone system (CS) of an organism is composed of molecular chaperones, chaperone co-factors, co-chaperones, and chaperone receptors and interactors. It is present throughout the body but with distinctive features for each cell and tissue type. Previous studies pertaining to the CS of the salivary glands have determined the quantitative and distribution patterns for several members, the chaperones, in normal and diseased glands, focusing on tumors. Chaperones are cytoprotective, but can also be etiopathogenic agents causing diseases, the chaperonopathies. Some chaperones such as Hsp90 potentiate tumor growth, proliferation, and metastasization. Quantitative data available on this chaperone in salivary gland tissue with inflammation, and benign and malignant tumors suggest that assessing tissue Hsp90 levels and distribution patterns is useful for differential diagnosis-prognostication, and patient follow up. This, in turn, will reveal clues for developing specific treatment centered on the chaperone, for instance by inhibiting its pro-carcinogenic functions (negative chaperonotherapy). Here, we review data on the carcinogenic mechanisms of Hsp90 and their inhibitors. Hsp90 is the master regulator of the PI3K-Akt-NF-kB axis that promotes tumor cell proliferation and metastasization. We discuss pathways and interactions involving these molecular complexes in tumorigenesis and review Hsp90 inhibitors that have been tested in search of an efficacious anti-cancer agent. This targeted therapy deserves extensive investigation in view of its theoretical potential and some positive practical results and considering the need of novel treatments for tumors of the salivary glands as well as other tissues
Trading interactions for topology in scale-free networks
Scale-free networks with topology-dependent interactions are studied. It is
shown that the universality classes of critical behavior, which conventionally
depend only on topology, can also be explored by tuning the interactions. A
mapping, , describes how a shift of the
standard exponent of the degree distribution can absorb the
effect of degree-dependent pair interactions .
Replica technique, cavity method and Monte Carlo simulation support the
physical picture suggested by Landau theory for the critical exponents and by
the Bethe-Peierls approximation for the critical temperature. The equivalence
of topology and interaction holds for equilibrium and non-equilibrium systems,
and is illustrated with interdisciplinary applications.Comment: 4 pages, 5 figure
- …