1,502 research outputs found

    Seismic and energy retrofitting of residential buildings: a simulation-based approach

    Get PDF
    The topic of the high seismic vulnerability of housing stock in Italy is back again at the center of political, economic, social and scientific-technical debate following the seismic crisis that struck Marche, Umbria and Lazio regions in 2016. These events have once again raised the need for a massive retrofitting program at National and Regional level, addressing the majority of the existing building stock, realized for 60% prior to the adoption of the first seismic code (Law 64/74), in a territory characterized north to south by high levels of seismic hazard. In recent years, different kinds of tools have been implemented to allow the simulation of natural hazards’ impacts on the built environment and to support strategic choices both in the field of emergency management and resilience-based urban design and planning. Nevertheless, an integrated set of instruments for a quantitatively informed decision support is still missing. Within EU-FP7 CRISMA project, an integrated DSS (Decision Support System) application has been developed, with a set of tools and functionalities addressing the main aspects involved in the decision-making processes for natural hazards preparedness and response

    Building Resilient Cities: A Simulation-Based Scenario Assessment Methodology for the Integration of DRR and CCA in a Multi-Scale Design Perspective

    Get PDF
    Resilience of the built environment and communities to natural and man-made hazards is consolidating worldwide as a key requirement in the field of urban planning and building design, and there is an increasing awareness that Sustainable Development Goals and priorities of the Sendai Framework cannot be achieved without a comprehensive approach able to promote the effective implementation of DRR and CCA measures within regeneration processes at various scales. In this sense, an “all-hazards” approach, addressing multiple risk conditions (including Natech and cascading effects) and integrating DRR and CCA design strategies, show a highly cost-effective potential, maximizing the effect of complementary measures and optimizing mitigation/adaptation design techniques within a multi-scale (building/neighbourhood/city) resilience perspective, delivering at the same time socio-economic benefits linked to the improvement of urban spaces’ liveability and environmental quality. Vulnerability and impact assessment represent an essential component of a simulation-based methodology aimed at increasing the potential for use of scientific results by decision-makers, through multi-hazard and dynamic impact scenarios combined with cost-benefit and multi-criteria analyses to assess the effectiveness of alternative options. The paper presents the methodological approach developed at PLINIVS Study Centre and the experimental applications implemented within recent EU and National projects, such as H2020-ESPREssO and SIMMCITIES_NA

    Computational LEED: computational thinking strategies and Visual Programming Languages to support environmental design and LEED credits achievement

    Get PDF
    Since environmental and energy issues and challenges continues to emerge as key global concerns, Green Building Certification Systems are becoming increasingly relevant in the construction industry. In this regard, LEED (Leadership in Energy and Environmental Design) is considered one of the most widely recognized environmental assessment methods used globally in the construction industry today. However, due to the high level of complexity of the LEED system, the tools usually used to verify the achievement of the credits lack of “design friendliness” and hardly communicate effectively with the conventional tools used by architects and engineers (e.g. CAD, BIM). This makes difficult to fully take into account, especially at the early design stage, the many interconnected aspects that contribute to the green certification, with consequent issues often arising in the design validation and/or construction phases, resulting in time delays and cost increments. The application of innovative problem-solving methods, such as computational thinking, together with coding techniques, represents an effective way to deal with this issue. This kind of methodology, in fact, allows the requirements of a specific LEED credit to be digitally parametrised and flexibly incorporated into a “designer friendly” working environment. In particular, Visual Programming Languages (VPLs), due to their high simplicity of usage, allow architects and engineers to develop algorithms and thus implement their technical knowledge in the field of environmental design with computer programming skills, useful to improve their tools and keep them constantly updated. The aim of this paper is to illustrate a methodology through which, by merging computational thinking strategies with VPL tools, is possible to keep under control, in the same working environment, all the parameters required to verify in real time the achievement of LEED credits. To demonstrate the flexibility of the approach, dedicated tools developed for the verification of some specific credits at different scales – neighbourhood and building – are illustrated as operational examples of the proposed methodology

    Climate-resilient urban transformation pathways as a multi-disciplinary challenge: the case of Naples

    Get PDF
    The effects of climate change in cities are already visible with extreme events globally increasing in both frequency and intensity. It is essential to consi- der the impact of urban regeneration strategies on local microclimatic conditions in order to guide urban planning and design in a resilient key. The complex ma- nagement of information required to define adequate intervention strategies at a local level is a growing challenge for public administrations. The paper presents the first results of the ongoing H2020 project CLARITY (2017-2020) aimed at developing climate services for the integration of adaptation measures in urban redevelopment actions focused on activities performed in partnership by the UNINA team and the City of Naples, one of the project’s case studies

    Theoretical model for cascading effects analyses

    Get PDF
    Abstract In case of exceptional events of natural or anthropogenic type, the elements at risk (people, buildings, infrastructures, economy, etc.) are often hit by sequences of 'cascading events', function of time and space, caused by the triggering event (earthquake, landslide, volcanic eruption, fire, electric failure, etc.). Generally, sequences of events can involve the same element at risk, and the combined effects of cascading phenomena can strongly amplify the impact caused by single events in terms of extension of the affected area and damage level. The final impact on the territory can be significant and require to be carefully assessed in terms of emergency planning and management. This paper discusses from a theoretical point of view the modelling needs and the main issues to be taken into account in the development of simulation tools aiming to include cascading effects analyses to effectively support decision-makers in their preparedness and disaster mitigation strategies in the framework of emergency planning at local, national and international level. The model aims at developing cascading effects scenarios at different level of detail, depending on the availability of inventory/exposure data for the different categories of elements at risk and hazard/impact models for the various hazard sources. It has been developed within EU-FP7 SNOWBALL project (Lower the impact of aggravating factors in crisis situations thanks to adaptive foresight and decision-support tools, 2015–2017)

    The mitigation of volcanic risk as opportunity for an ecological and resilient city

    Get PDF
    The paper outlines some of the results of SPeeD project, funded by EU, Campania Region and National Department of Civil Protection. The research is aimed at the definition of impact scenarios resulting from the eruption of Vesuvius and Campi Flegrei and the development of strategies to reduce the damage on the built environment. The issues related to the identification of technical solutions for mitigating the impact on buildings and infrastructure, to the socio-economic benefits arising from widespread interventions on the territory, as well as to the drafting of preparatory guidelines for the implementation of regional regulations and local building codes for volcanic risk-prone areas, have been developed at PLINIVS Study Centre of University of Naples Federico II. The methodological approach for the definition of appropriate technologies aimed at reducing the impact in relation to eruptive phenomena and construction types in the area is based on PLINIVS Volcanic Impact Simulation Model, a unique tool to define impact scenarios consequent to a volcanic eruption in the region, able to evaluate the cumulative effects given by the action of volcanic phenomena, such as earthquake, ash fall, pyroclastic flows and landslides. The study aims to demonstrate how the application of appropriate technologies for retrofit interventions or new constructions, aimed at reducing the vulnerability of building components, represents at the same time an opportunity to encourage a diffuse redevelopment of the territory driven by energy and environmental efficiency issues

    Amyloidosis: What does pathology offer? The evolving field of tissue biopsy

    Get PDF
    Since the mid-nineteenth century pathology has followed the convoluted story of amyloidosis, recognized its morphology in tissues and made identification possible using specific staining. Since then, pathology studies have made a significant contribution and advanced knowledge of the disease, so providing valuable information on the pathophysiology of amyloid aggregation and opening the way to clinical studies and non-invasive diagnostic techniques. As amyloidosis is a heterogeneous disease with various organ and tissue deposition patterns, histology evaluation, far from offering a simple yes/no indication of amyloid presence, can provide a wide spectrum of qualitative and quantitative information related to and changing with the etiology of the disease, the comorbidities and the clinical characteristics of patients. With the exception of cardiac transthyretin related amyloidosis cases, which today can be diagnosed using non-biopsy algorithms when stringent clinical criteria are met, tissue biopsy is still an essential tool for a definitive diagnosis in doubtful cases and also to define etiology by typing amyloid fibrils. This review describes the histologic approach to amyloidosis today and the current role of tissue screening biopsy or targeted organ biopsy protocols in the light of present diagnostic algorithms and various clinical situations, with particular focus on endomyocardial and renal biopsies. Special attention is given to techniques for typing amyloid fibril proteins, necessary for the new therapies available today for cardiac transthyretin related amyloidosis and to avoid patients receiving inappropriate chemotherapy in presence of plasma cell dyscrasia unrelated to amyloidosis. As the disease is still burdened with high mortality, the role of tissue biopsy in early diagnosis to assure prompt treatment is also mentioned

    Climate change risks and environmental design for resilient urban regeneration. Napoli Est pilot case

    Get PDF
    The paper shows the results of the first phase of the research project “METROPOLIS - Methodologies and Technologies for integrated and sustainable adaptation and security of urban systems” developed by STRESS Scarl - High Technology District for Sustainable Building of the Campania Region. The project is aimed at the development of innovative strategies for a resilient urban system and design guidelines for appropriate choices of urban regeneration based on the assessment and mitigation of natural and man-made hazards. The paper describes the results concerning the definition of innovative methodologies for the knowledge and mapping of urban vulnerability to climate risks in the East Naples area. The cross-disciplinary and multi-scale approach integrates knowledge and technology from university and industrial partners to develop a decision support tool in the field of urban regeneration. The study of the impacts of extreme weather events, based on the simulation of climate change scenarios in the area of East Naples, includes the data management in a GIS environment from satellite remote sensing, direct surveys and simulation software, focusing on the environmental and technological performance of urban spaces and elements. The research results report risk scenarios for pluvial flood and heat waves hazards according to both climatic variables, both aggravating phenomena arising from the characteristics of urban settlements. The complex reading of the buildings-open spaces system and its response to climate change conditions has allowed to define the vulnerability of elements at risk, as well as adaptation and mitigation solutions to be implemented within urban regeneration interventions, identifying critical issues in relation to comfort and environmental risk conditions, consumption and efficient use of resources, compliance of the technological choices to specific requirements.

    Seismic and energy retrofitting of residential buildings: a simulation-based approach

    Get PDF
    The topic of the high seismic vulnerability of housing stock in Italy is back again at the center of political, economic, social and scientific-technical debate following the seismic crisis that struck Marche, Umbria and Lazio regions in 2016. These events have once again raised the need for a massive retrofitting program at National and Regional level, addressing the majority of the existing building stock, realized for 60% prior to the adoption of the first seismic code (Law 64/74), in a territory characterized north to south by high levels of seismic hazard. In recent years, different kinds of tools have been implemented to allow the simulation of natural hazards’ impacts on the built environment and to support strategic choices both in the field of emergency management and resilience-based urban design and planning. Nevertheless, an integrated set of instruments for a quantitatively informed decision support is still missing. Within EU-FP7 CRISMA project, an integrated DSS (Decision Support System) application has been developed, with a set of tools and functionalities addressing the main aspects involved in the decision-making processes for natural hazards preparedness and response
    • …
    corecore