165 research outputs found

    Supported chiral proline and pyrrolidine organocatalysts for enantioselective C-C bond formation reactions.

    Get PDF
    This work has been aimed to the study of insoluble polymer-bound (IPB) chiral organocatalysts to be used under continuous flow or batch conditions for enantioselective transformations. For the preparation of IPB chiral organocatalysts inside microreactors two different strategies were taken into consideration: (a) bottom-up approach, where proline derivatives were supported by CuAAC on methacrylic polymer brushes, grown by atom transfer radical polymerization (ATRP) on the inner walls of a microchip; (b) copolymerization of proline-bearing styrenic monomer with styrene and divinylbenzene (DVB) to produce a resin monolith within an empty HPLC column. For the use in batch reactions we developed a novel pyrrolidine-sulfonamide organocatalyst supported by CuAAC on commercial Merrifield resin

    Life Cycle Sustainability Assessment of a Novel Bio-Based Multilayer Panel for Construction Applications

    Get PDF
    The bioeconomy can be integral to transforming the current economic system into one with reduced environmental and social impacts of material consumption. This work describes a bio-based multi-layer panel that is based on residual coniferous bark. To ensure that the presented bio-based panel positively contributes to environmental protection while remaining competitive with conventional products and meeting high social standards, the development of the panel is accompanied by a life cycle sustainability assessment. This study performs a comparative LCA and LCC of the developed panel to conventional benchmark panels, as well as a qualitative social life cycle assessment. While the panel performs only economically marginally weaker than the benchmarks, the results are more heterogeneous for the environmental dimension with benefits of the bio-based panel in categories such as climate change, acidification, and ozone formation and detriments in categories including eutrophication. The S-LCA analysis shows that all of the involved companies apply social principles in direct proximity; however, social responsibility along the supply chain could be further promoted. All results need to be viewed with the caveat that the manufacturing processes for the new panel have been implemented, to date, on a pilot scale and further improvements need to be achieved in terms of upscaling and optimisation cycles.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 723670, with the title “Systemic approach to reduce energy demand and CO2 emissions of processes that transform agroforestry waste into high added value products (REHAP)”

    Contrôler l'interaction onde-particules

    No full text
    International audienceNous nous intéressons à la dynamique saturé du Laser à Electrons Libres Simple Passage, à travers une approche champ moyen. Nous proposons une méthode afin d'accroître la taille de la macro-particule. Celle-ci repose sur la reconstruction de tores invariants de la dynamique de particules-test. A cette fin, un terme de contrôle - qui agit comme une faible perturbation du système - est calculé. Les possibles conséquences de cette stratégie vis-à-vis de l'optimisation du laser sont discutées

    Effect of an alkyl substituent and spacer length in benzene-centered tripodal diglycolamides on the sequestration of minor actinides

    Get PDF
    Three benzene-centered tripodal diglycolamide (Bz-T-DGA) ligands, where diglycolamide (DGA) moieties are tethered to the central benzene ring through a methylene spacer and having either a hydrogen atom (LI) or an isopentyl group (LII) attached to the N-atom, and DGA moieties attached via an ethylene spacer and having an isopentyl group attached to the N-atom (LIII), were studied for their complexation and extraction abilities towards trivalent actinides and lanthanides. The distribution ratio of Am(iii) and Eu(iii) with 1 mmol L-1 ligand in 5% iso-decanol/n-dodecane followed the order: LII &gt; LIII &gt; LI. The substitution of the H atom with the isopentyl group on the N-atom of the DGA moieties resulted in two orders of magnitude enhancement in the extraction ability of the ligand. On the other hand, increase in the spacer length between the benzene ring and the DGA moieties resulted in several fold reduction in the extraction ability of the ligand. Spectroscopic studies with Eu3+ ions in acetonitrile also confirmed the metal/ligand complex formation constant in the order: LII &gt; LIII &gt; LI. Luminescence decay lifetimes of Eu3+/ligand complexes confirmed the absence of water molecules and that all the primary coordination sites of the metal ion are occupied by the ligands.</p

    Liquid-liquid extraction and facilitated transport of f-elements using an N-pivot tripodal ligand

    Get PDF
    Diglycolamide (DGA)-functionalized tripodal ligands offer the required nine-coordinated complex for effective binding to a trivalent lanthanide/actinide ion. A N-pivot tripodal ligand (TREN-DGA) containing three DGA pendant arms was evaluated for the extraction and supported liquid membrane transport studies using PTFE flat sheets. Solvent extraction studies indicated preferential extraction of 1:1 (M:L) species, while the metal ion extraction increased with increasing HNO3 concentration conforming to a solvated species extraction. Flat sheet-supported liquid membrane studies, carried out using 4.0 × 10−3 M TREN-DGA in 95% n-dodecane + 5% iso-decanol indicated faster mass transport for Eu3+ ion as compared to Am3+ ion. The determined transport parameters indicated slow diffusion of the M-TREN-DGA (M = Am or Eu) complex being the rate-determining step. The transport of lanthanides and actinides followed the trend: Eu3+ &gt; Am3+∼ Pu4+ &gt;&gt; UO22+ and Am can be selectively separated from a mixture of U and Pu by oxidizing the latter to its +6 oxidation state. The liquid membrane stability was not encouraging and was deteriorating the transport efficiency with time, which was attributed to carrier loss into the aqueous phases.</p

    Metrological Analysis of Geopotential Gravity Field for Harbor Waterside Management and Water Quality Control

    Get PDF
    Sea level oscillations are the superposition of many contributions. In particular, tide is a sea level up-down water motion basically depending on three different phenomena: the Earth-Moon-Sun gravitational relationship, the water surface fluid reaction to atmospheric meteorological dynamic, and the Newtonian vertical adjustment of the sea surface due to atmospheric pressure variations. The first tide component (astrotide) is periodic and well known in all points of the Earth surface; the second one is directly related to the meteorological phenomenon, and then it is foreseeable; the Newtonian component, on the contrary, is not readily predictable by a general hydrostatic law, because the J factor that represents the Newtonian transfer (from the atmospheric weight to the consequent sea level) is variable in each harbor area. The analysis of the gravity field permits to forecast the sea level variation due to meteorological tide events, and its metrological analysis highlights a compensation in the inverse hydrobarometric factor to be taken into account to correctly compensate atmospheric pressure variations in semibinding basins. This phenomenon has several consequences in Harbor Waterside management and in water quality control as shown by the reported case studies and introduces a new reference parameter: the so-called Water 1000

    A highly efficient sensor for europium(III) estimation using a poly(propylene imine) diaminobutane diglycolamide dendrimer as the ionophore:Potentiometric and photoluminescence studies

    Get PDF
    Multiple-diglycolamide (DGA) based ligands are known as highly promising extractants for the selective and efficient extraction of trivalent lanthanides/actinides from acidic feed solutions and therefore they have a great potential for the low level detection of these metal ions when used as ionophores in a potentiometric sensor. However, their use as ionophores in a potentiometric sensor is not much explored. Here in, we report the potentiometric sensing of Eu(III) ion in acidic medium using three novel multiple DGA-functionalized dendrimers: viz., generation zero (G0), one (G1) and two (G2) poly(propylene imine) diaminobutane dendrimers as ionophores doped in a polyvinyl chloride (PVC) matrix containing 2-nitrophenyl octyl ether (NPOE) as the plasticizer and sodium tetraphenylborate (NaTPB) as the ionic additive. Out of these three dendrimers, the G1 membrane gave very encouraging results and the G2 membrane did not work properly. On the other hand, the G0 membrane showed a narrower linear dynamic range (LDR), and a higher limit of detection (LOD) than the G1 membrane. The membrane with 4.1 % G1, 31.1 % PVC, 62.2 % NPOE, 2.6 % NaTPB exhibited a linear response behaviour from 6.6 × 10-7 M to 1.5 × 10-2 M Eu(III) with a slope of 15.6 ± 0.2 mV/decade and a LOD of 5.0 × 10-7 M. The response time and lifetime of this sensor were found to be &lt; 10 s and more than three months, respectively, and showed reasonably high selectivity with respect to mono- and divalent cations as well as the uranyl ion. All the sensor membranes contained two types of Eu(III) species as seen by luminescence spectroscopy. The sensor efficiency was checked by the ‘spike recovery method’. The G1 membrane sensor was also employed for the potentiometric titration of Eu(III) as an indicator electrode. Both methods showed more than 95 % recovery with excellent matching with the X-ray fluorescence (XRF) results. The sensor can also be used in the estimation of europium ion in a laboratory bearing waste and in a lamp phosphor waste leached which compared well with XRF and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) results, respectively.</p
    corecore