6 research outputs found

    Global coordinate system and the Euler angles that describe the position of the molecular structures of collagen-like peptide and alpha helix.

    No full text
    <p>The directions of propagation of the incident and scattered beam (E<sub>i</sub> and E<sub>s</sub>) are represented by the red arrows parallel to the X axis while yellow bar represents the position of molecular structures. The “in plane” rotations are performed in the plane YZ and the “out of plane” rotations are performed in the ZX plane.</p

    Polarized Raman spectroscopy of RTT.

    No full text
    <p>Spectra taken at the same spot of the sample were collected with two different laser polarization orientations [parallel (laser X, blue line) and perpendicular (laser Z, red line) to the tendon axis]. A large anisotropy of the amide I band in the two different laser to fiber configurations is due to the preferential orientation of vibrational units along the main axis of the tendon.</p

    Theoretical prediction of the anisotropic response of amide I band for collagen-like and alpha helix molecules.

    No full text
    <p>Normalized anisotropic response of the amide I band of a collagen-like peptide molecule (ID:1CAG) and alpha helix (ID:1XQ8) located at A) (φ = 90°, θ = 0°,ω = 0°) on the plane ZY, B) (φ = 90°, θ = 90°, ω = 0°) on the plane ZY and C) (φ = 0°, θ = 0°,ω = 0°) on the plane ZX. For the collagen-like peptide structure located “in plane” (A and B) the maximum response of the amide I band is obtained when the polarization of the light is parallel to the molecule position, the opposite response is observed for the alpha helix. In the “out of plane” (C) response both structures give rise to a much more isotropic response of the amide I band.</p

    Averaged theoretical amide I response of collagen-like peptide molecules for “out of plane” rotation.

    No full text
    <p>Normalized amide I response for four different collagen-like peptide structures (ID: 1BKV, 1CGD, 1QSU) that are rotated in the plane XZ [from (φ = 90°, θ = 90°) to (φ = 0°, θ = 90°)] <i>vs</i> the polarization angle of the incident light. The responses have been averaged at angles ω = 0°, ω = 90°, ω = 180°, ω = 270°. All the molecules exhibit a similar trend independent from which collagen-like peptide crystal structure. The average responses for all the selected structures are marked in bold.</p

    Morphology and Overall Chemical Characterization of Willow (<i>Salix</i> sp.) Inner Bark and Wood: Toward Controlled Deconstruction of Willow Biomass

    No full text
    The morphology and chemical composition of the inner bark of four willow hybrids were analyzed as a step toward complete willow biomass valorization. The inner bark consisted of highly delignified bundles of thick-walled sclerenchyma fibers and nondelignified surrounding tissue of thin-walled parenchyma cells. In comparison with willow wood fibers, the sclerenchyma fibers were longer, they had a very narrow lumen and their walls were made of up to eight separate layers. One fourth of the dry mass of the inner bark was formed of ash and acetone extractable substances. Although the lignin-to-polysaccharide ratio was similar in the inner bark and wood, their polysaccharide compositions were different. While glucose and xylose were the main monomers in wood, the inner bark had also high arabinose and galactose contents. In addition, more rhamnose was present in the inner bark which was indicative of its higher pectin content
    corecore