15,273 research outputs found
Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation
The gravitational radiation originating from a compact binary system in
circular orbit is usually expressed as an infinite sum over radiative multipole
moments. In a slow-motion approximation, each multipole moment is then
expressed as a post-Newtonian expansion in powers of v/c, the ratio of the
orbital velocity to the speed of light. The bare multipole truncation of the
radiation consists in keeping only the leading-order term in the post-Newtonian
expansion of each moment, but summing over all the multipole moments. In the
case of binary systems with small mass ratios, the bare multipole series was
shown in a previous paper to converge for all values v/c < 2/e, where e is the
base of natural logarithms. In this paper, we extend the analysis to a dressed
multipole truncation of the radiation, in which the leading-order moments are
corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the
dressed multipole series converges also for all values v/c < 2/e, and that it
coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur
STS-31 Space Shuttle mission report
The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion
STS-41 Space Shuttle mission report
The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion
STS-38 Space Shuttle mission report
The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion
STS-35 Space Shuttle mission report
The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion
NASA Lewis steady-state heat pipe code users manual
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user
A target for production of radioxenons
A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119
The Express Project: Automating the Software Development Process
The goal of the Express project is to provide an efficient software development environment for embedded systems. The approach is to create a new life-cycle paradigm, using rapid prototyping to validate system specifications. The rapid prototype will be made possible by using (1) very high level specification languages that automatically generate code and (2) a user-machine interface that helps both in the layout of the design and in the specification of the input devices and output screens for the embedded system.
All user interactions with Express are integrated through Express\u27s knowledge-based Framework, which will support efficient, interdisciplinary communications. The Framework is designed to support evolutionary prototyping. The high-level view of the embedded system can be created and evolved concurrently with the low-level specifications of processing segments that are understood and known to be required. System engineers will define the high-level view (including allocation of requirements from layer to layer), and specialists will create low-level diagrams and specifications for processing threads in each of their (initially) independent areas. In small steps the two views will be merged into a single architecture diagram. One can zoom in on one subsystem and be presented with the fine structure of the subsystem down to the level of executable specifications.
A second subsystem, which is reached through the knowledge-based Framework, is the Graphical Specification Subsystem (GSS) for Displays. It will make human-machine interface engineers more productive when designing operator displays for embedded systems. It will allow them to build a display graphically. They can select icons from a menu, position and size each instance of an icon graphically (by mouse action), and specify in a natural way the desired interaction with other portions of the embedded system. Gauges, graphs, and maps are examples of objects represented by icons. The GSS also will be used to specify simulated input devices to the system, such as mice, push buttons, and joysticks
Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II
Extremely radiation hard sensors are needed in particle physics experiments
to instrument the region near the beam pipe. Examples are beam halo and beam
loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial
diamond sensors are widely used. In this paper single crystal sapphire sensors
are considered as a promising alternative. Industrially grown sapphire wafers
are available in large sizes, are of low cost and, like diamond sensors, can be
operated without cooling. Here we present results of an irradiation study done
with sapphire sensors in a high intensity low energy electron beam. Then, a
multichannel direction-sensitive sapphire detector stack is described. It
comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness,
metallized on both sides, and apposed to form a stack. Each second metal layer
is supplied with a bias voltage, and the layers in between are connected to
charge-sensitive preamplifiers. The performance of the detector was studied in
a 5 GeV electron beam. The charge collection efficiency measured as a function
of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The
signal size obtained from electrons crossing the stack at this voltage is about
22000 e, where e is the unit charge.
The signal size is measured as a function of the hit position, showing
variations of up to 20 % in the direction perpendicular to the beam and to the
electric field. The measurement of the signal size as a function of the
coordinate parallel to the electric field confirms the prediction that mainly
electrons contribute to the signal. Also evidence for the presence of a
polarisation field was observed.Comment: 13 pages, 7 figures, 3 table
- …