13 research outputs found

    Rift Valley Fever Risk Map Model and Seroprevalence in Selected Wild Ungulates and Camels from Kenya

    Get PDF
    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006-2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006-2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000-2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008-2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission

    Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya

    No full text
    The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 (A374/17) and AvCoV/ck/KE/1922/A376/2017 (A376/17), inadvertently discovered using random nontargeted next-generation sequencing (NGS) of cloacal swabs collected from indigenous chickens. Despite having genome organization (5′UTR-[Rep1a/1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3′UTR), canonical conservation of essential genes and size (~27.6 kb) typical of IBVs, the Kenyan isolates do not phylogenetically cluster with any genotypes of the 37 IBV lineages and 26 unique variants (UVs). Excluding the spike gene, genome sequences of A374/17 and A376/17 are only 93.1% similar to each other and 86.7–91.4% identical to genomes of other AvCoVs. All five non-spike genes of the two isolates phylogenetically cluster together and distinctly from other IBVs and turkey coronaviruses (TCoVs), including the indigenous African GI-26 viruses, suggesting a common origin of the genome backbone of the Kenyan isolates. However, isolate A376/17 contains a TCoV-like spike (S) protein coding sequence and is most similar to Asian TCoVs (84.5–85.1%) compared to other TCoVs (75.6–78.5%), whereas isolate A374/17 contains an S1 gene sequence most similar to the globally distributed lineage GI-16 (78.4–79.5%) and the Middle Eastern lineage GI-23 (79.8–80.2%) viruses. Unanswered questions include the actual origin of the Kenyan AvCoVs, the potential pathobiological significance of their genetic variations, whether they have indeed established themselves as independent variants and subsequently spread within Kenya and to the neighboring east/central African countries that have porous live poultry trade borders, and whether the live-attenuated Mass-type (lineage GI-1)-based vaccines currently used in Kenya and most of the African countries provide protection against these genetically divergent field variants

    Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya

    No full text
    The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 (A374/17) and AvCoV/ck/KE/1922/A376/2017 (A376/17), inadvertently discovered using random nontargeted next-generation sequencing (NGS) of cloacal swabs collected from indigenous chickens. Despite having genome organization (5′UTR-[Rep1a/1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3′UTR), canonical conservation of essential genes and size (~27.6 kb) typical of IBVs, the Kenyan isolates do not phylogenetically cluster with any genotypes of the 37 IBV lineages and 26 unique variants (UVs). Excluding the spike gene, genome sequences of A374/17 and A376/17 are only 93.1% similar to each other and 86.7–91.4% identical to genomes of other AvCoVs. All five non-spike genes of the two isolates phylogenetically cluster together and distinctly from other IBVs and turkey coronaviruses (TCoVs), including the indigenous African GI-26 viruses, suggesting a common origin of the genome backbone of the Kenyan isolates. However, isolate A376/17 contains a TCoV-like spike (S) protein coding sequence and is most similar to Asian TCoVs (84.5–85.1%) compared to other TCoVs (75.6–78.5%), whereas isolate A374/17 contains an S1 gene sequence most similar to the globally distributed lineage GI-16 (78.4–79.5%) and the Middle Eastern lineage GI-23 (79.8–80.2%) viruses. Unanswered questions include the actual origin of the Kenyan AvCoVs, the potential pathobiological significance of their genetic variations, whether they have indeed established themselves as independent variants and subsequently spread within Kenya and to the neighboring east/central African countries that have porous live poultry trade borders, and whether the live-attenuated Mass-type (lineage GI-1)-based vaccines currently used in Kenya and most of the African countries provide protection against these genetically divergent field variants

    Surveillance and Genetic Characterization of Virulent Newcastle Disease Virus Subgenotype V.3 in Indigenous Chickens from Backyard Poultry Farms and Live Bird Markets in Kenya

    No full text
    Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017–2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8–100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5–88.9% and 88.5–91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species

    Surveillance and Genetic Characterization of Virulent Newcastle Disease Virus Subgenotype V.3 in Indigenous Chickens from Backyard Poultry Farms and Live Bird Markets in Kenya

    No full text
    Kenyan poultry consists of ~80% free-range indigenous chickens kept in small flocks (~30 birds) on backyard poultry farms (BPFs) and they are traded via live bird markets (LBMs). Newcastle disease virus (NDV) was detected in samples collected from chickens, wild farm birds, and other domestic poultry species during a 2017–2018 survey conducted at 66 BPFs and 21 LBMs in nine Kenyan counties. NDV nucleic acids were detected by rRT-PCR L-test in 39.5% (641/1621) of 1621 analyzed samples, of which 9.67% (62/641) were NDV-positive by both the L-test and a fusion-test designed to identify the virulent virus, with a majority being at LBMs (64.5%; 40/62) compared to BPFs (25.5%; 22/62). Virus isolation and next-generation sequencing (NGS) on a subset of samples resulted in 32 complete NDV genome sequences with 95.8–100% nucleotide identities amongst themselves and 95.7-98.2% identity with other east African isolates from 2010-2016. These isolates were classified as a new sub-genotype, V.3, and shared 86.5–88.9% and 88.5–91.8% nucleotide identities with subgenotypes V.1 and V.2 viruses, respectively. The putative fusion protein cleavage site (113R-Q-K-R↓F 117) in all 32 isolates, and a 1.86 ICPI score of an isolate from a BPF chicken that had clinical signs consistent with Newcastle disease, confirmed the high virulence of the NDVs. Compared to genotypes V and VI viruses, the attachment (HN) protein of 18 of the 32 vNDVs had amino acid substitutions in the antigenic sites. A time-scaled phylogeographic analysis suggests a west-to-east dispersal of the NDVs via the live chicken trade, but the virus origins remain unconfirmed due to scarcity of continuous and systematic surveillance data. This study reveals the widespread prevalence of vNDVs in Kenyan backyard poultry, the central role of LBMs in the dispersal and possibly generation of new virus variants, and the need for robust molecular epidemiological surveillance in poultry and non-poultry avian species

    Monthly predicted RVF risk assessment map overlaid with serological results collected prior to the 2006–2007 RVF outbreak; A) Tsavo East in September and October 2000, B) Garissa in October and November 2000, C) Laikipia in June and July 2000, and D) Amboseli in October and November 2000.

    No full text
    <p>The light green background color shows the extent of the potential epizootic region and high risk is indicated by red color in 1 km<sup>2</sup> pixels. Magenta lines represent polygons for conservation areas such as national parks or preserves. For each sample month, the left-hand map shows the RVF risk conditions for the prior month, and the right-hand map shows the month the samples were taken, along with sample locations. Below the maps for sample months, pie charts show the proportion of samples found to be RVF seropositive for each species, by location. Only locations sampled in that month are plotted.</p
    corecore